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Abstract – Current transhumeral and transradial 
amputees abandon a significant amount of 
unintuitive prostheseis. Measuring cognitive 
workload during prostheseis usage could help 
researchers develop more intuitive prostheseis and 
lower abandonment rates. The purpose of this 
study is to verify the efficacy of heart rate 
variability (HRV) as a measure of cognitive 
workload when applied to prosthesis use. 
 
Participants completed a prosthesis control task 
with a virtual prosthetic hand at two difficulty 
levels. Participants controlled this hand with a 
myoelectric sleeve on their forearm. ECG was 
acquired as the participants completed the virtual 
target task. The low frequency to high frequency 
ratio (LF/HF), a measure of heart rate variability 
sensitive to cognitive load, was calculated for the 
task. 
 
The results suggest the LF/HF detects changes in 
cognitive workload during prosthesis use. Future 
work could use HRV to show the cognitive benefits 
of advanced prostheses. 
 
 
 
 
 
 
 
Ripple provided the neural processor (including software to 
interface with the processor and prosthesis) and front ends. DEKA 
provided the “LUKE” Arm. Funding provided by NSF Award 
No. ECCS-1533649, and DARPA BTO HAPTIX program, 
SPAWAR Pacific Contract No. N66001-15-C-4017. Partial 
funding is provided by the University of Utah Office of 
Undergraduate Research. 
G. A. Clark is with the Department of Biomedical Engineering and 
the School of Computing, University of Utah, Salt Lake City, UT 
84112-9458, USA (email: greg.clark@utah.edu ). 
S. T. Jones and M. D. Paskett are with the Department of 
Biomedical Engineering, University of Utah, Salt Lake City, UT 
84112-9458, USA (emails: sonny.jones@utah.edu, 
michael.paskett@utah.edu ). 
C. C. Duncan is with the Department of Physical Medicine and 
Rehabilitation, University of Utah Health, Salt Lake City, 84132, 
USA (email: christopher.duncan@hsc.utah.edu ).  

                       I.     INTRODUCTION 
 

Current commercial prostheses are 
unintuitive and difficult to use. Prostheseis users 
abandon 23% of body-powered prostheseis and 26% 
of electrically powered prostheseis [1]. Utilizing 
residual muscle activity may offer a more intuitive 
means of prosthesis control. Current commercial 
myoelectric prostheseis use cumbersome control 
approaches; for instance, using repeated contractions 
to switch which degree of freedom (DOF) is being 
controlled [2].  Improving the usability of a prosthesis 
may help lower abandonment rates, as the difficulty of 
use is cited as a major barrier to prosthesis adoption 
[3]. Few studies explore the cognitive burden of 
prosthesis use [4][5]. Measuring cognitive workload 
during prosthesis usage opens a new dimension of 
analysis focused on the patient, potentially providing 
increased justification for the clinical implementation 
of advanced prosthetic systems. 

Cognitive workload refers to the amount of 
cognitive resources expended in performing a task [6]. 
Heart rate variability (HRV) measures cognitive 
workload, specifically the ratio of low-frequency 
signal to high-frequency signal (LF/HF) and the 
standard deviation of N-N intervals (SDNN), during 
the performed task [7]. Low-frequency HRV (LF) is 
between 0.04-0.15 Hz and high-frequency HRV (HF) 
is between 0.15-0.40 Hz. HRV decreases when 
cognitive workload increases [8]. HRV, like many 
other physiological measures of cognitive workload, 
requires that tasks be adapted to suit recording 
requirements. HRV generally requires recordings 
ranging from 5 minutes to 24 hours but functions for 
recordings as short as 30 seconds [7]. 

The purpose of this study is to validate the 
efficacy of HRV as a measure of cognitive workload 
during prosthesis use. A surface electromyography 
(sEMG) sleeve attached to the forearm allows the 
participant to control the prosthesis. sEMG measures 
the electrical muscle activity from the forearm and 
feeds the data to software that will translate the 
electrical activity into prosthesis movement. 
Participants completed a target task involving large 
and small targets. The different target sizes alter the 
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difficulty of the task, allowing us to determine if HRV 
accurately reflects difficulty level and cognitive 
workload.    
 

II.    METHODS 
 

A. ECG Acquisition and System Setup 
The shimmer3 ECG device captures (Shimmer 

Research, Dublin, Ireland) electrocardiogram (ECG) 
data at 512 Hz. The Shimmer3 ECG Unit utilizes a 
five-wire, 4-lead electrode setup to save ECG data. 
ECG recordings were started and stopped by external 
commands from a MATLAB instrument driver.  
 
B. Pilot Study 

We validated the ECG system using the Stroop 
test. The Stroop test presents a name of a color and a 
mismatched text color. For example, the word is 
“green”, and the color of the word is blue (see Fig. 1). 
A series of color names are presented to the participant 
and the participant is asked to either select the color 
name or the font color with a keyboard response. 

 

            
Figure 1. Shown are example words that may be administered 
during the Stroop Test. Pilot Stroop study was administered using a 
virtual format from University of Washington’s Stroop Test 
website. Link: http://faculty.washington.edu/chudler/words.html  

 
A baseline reading was taken for a period of 2 

minutes. The participant was then asked to take the 
Stroop test for another interval of 2 minutes. ECG 
readings from both intervals are analyzed using a 
MATLAB script utilizing the PhysioZoo HRV 
analysis software (Israel Institute of Technology, 
Haifa, Israel). Data files are edited to include the 
PhysioZoo specific header and file format is changed 
to .txt. Each ECG data file is sent into the PhysioZoo 
processing GUI which analyzes the file and outputs 
HRV metrics. Development of a MATLAB ECG 
analysis script provided a quicker alternative to this 
method. Section E contains additional details on ECG 
processing.     
 
 
 

C. Experimental Procedure 
1)    Prosthesis Control. Prosthesis control has 

been described in depth previously [9]. A sEMG 
sleeve and 512-channel Grapevine System (Ripple 
Neuro LLC, Salt Lake City, UT) acquire myoelectric 
signals from the participant’s forearm. Signals are 
filtered using Butterworth and Notch filters. Manual 
inspection of individual channels is performed to 
remove any defective channels. 

Specific decode algorithms are described 
previously [9]. A modified Kalman Filter (mKF) 
utilizing 48 EMG features predicts prosthesis 
movement. Decode training is performed using the 
MSMS virtual hand (Johns Hopkins Applied Physics 
Lab, Baltimore, MD). The participant is trained on 3 
individual degrees of freedom (DOF) which include 
flexion on the index, middle, and ring finger. Prior to 
training, study administrators coach participants on 
movements that they will perform. Participants then 
mimic flexion movements in a 15-trial block order 
from index to ring finger, 5 trial per digit. Training 
data is used for mKF control algorithms to provide 
proportional control from the sEMG. 
          3)   Target Task. Participants will control a 
virtual prosthetic hand with the sEMG sleeve and flex 
the index, middle, and ring fingers to touch targets 
within the digit’s range of motion (ROM). Participants 
will try to move a single DOF to a desired target 
position with either a 10% error window (small target, 
0.10) or a 35% error window (large target, 0.35) and 
remain within the target for 5 seconds. Participants are 
instructed that the task requires that they keep the digit 
within the target instead of aiming for dead center. The 
target will disappear after the allotted time and another 
target will reappear after 3-5 seconds. This constitutes 
a single trial. A set includes 6 trials per DOF for the 
same target size. Starting target size is randomized. An 
example set is as follow: 1) small target task 2) large 
target task. Participants completed 4 of these sets. The 
NASA-TLX survey will be administered after the last 
round of each target size. ECG is recorded during each 
set of targets.   

 
Figure 2: Image of virtual prosthetic arm and sample small and large 
target sizes. Targets are hidden during algorithmic training as 
participants mimic flexion of the index, middle, and ring finger. 
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D. NASA Task Load Index (TLX) 

The NASA Task Load Index (TLX) survey has 
been utilized by many studies as a subjective 
evaluation of cognitive load which adds support to 
physiological findings [10]. The TLX survey was 
administered after the target task to support HRV 
findings.  

 
E. ECG Data Analysis 
         Data is imported from Shimmer3 ECG and 
exported to .csv files. We modified the file headers and 
file type to .txt to be importable in the PhysioZoo 
software suite. ECG .txt files are fed through a 
MATLAB pipeline utilizing functions from the 
PhysioZoo instrument driver. The ECG file undergoes 
prefiltering by a bandpass filter with lower and upper 
cutoff of 3 Hz and 100 Hz respectively and peak 
detection via an implemented energy based QRS 
detector to output an R-R interval time series. The time 
series passes through a moving-average filter for 
outlier removal to output N-N intervals. Finally, 
filtered N-N intervals undergo power spectral density 
analysis to output the power ratio between LF (0.04-
0.15 Hz) and HF (0.15-0.40 Hz). 
          Comparison of obtained LF/HF values from 
each trial will include utilizing a paired t-test for 
statistical significance. A paired t-test is run between 
LF/HF from all trials of large and small targets.   
 

III.     RESULTS 
 
A. Preliminary Stroop Test Results 
          The initial analysis compares the HRV statistics 
obtained from several participants during taking the 
Stroop Test and from a resting state.  

 
Figure 3: SDDN for resting (left) and stroop (right). Results are 
presented as aggregate data for all trials (N = 11). SDNN for resting 
is 59.2 ± 3.63 (mean ± SEM). SDNN for stroop is 49.5 ± 6.3 (mean 
± SEM). p > 0.05 (paired t-test). 
 

During preliminary testing, SDNN was found to 
be the most significant measure of cognitive workload; 
however, SDNN proved unreliable during preliminary 
target task testing. Testing showed that LF/HF was 

reliable measure during prosthesis usage. The study 
uses LF/HF as a measure of cognitive load from this 
point.  
 
B.   Target Task Results 
          11 participants completed the Target Task. The 
values presented are from HRV analysis on these trials 
and the NASA TLX results. Bar graphs were 
generated from the average LF/HF values for large and 
small target trials across participants and a t-test was 
calculated for the difference between averages within 
each participant’s results.  

 Large (0.35) Small (0.10) 
Participant 1 4.13 6.79 
Participant 2 0.94 1.42 
Participant 3 0.92 1.68 
Participant 4 1.44 1.43 
Participant 5 12.38 15.35 
Participant 6 0.54 0.70 
Participant 7 2.54 2.94 
Participant 8 3.04 4.09 
Participant 9 1.67 1.84 
Participant 10 0.78 1.38 
Participant 11 5.58 7.97 
Average 3.09 4.14 

Table 1: LF/HF values for Participants 1-11 during large and small 
target trials.  

 

Figure 4: LF/HF ratio for small 0.10 target size (left) and LF/HF 
ratio for large 0.35 target size (right). Results are presented as 
aggregate data for all participants (N = 11). LF/HF for small target 
is 4.0 ± 1.3 (mean ± SEM). LF/HF for large target is 3.1 ± 1.0 (mean 
± SEM). p < 0.01 (paired t-test).  

           The small target task resulted in a larger LF/HF 
ratio than the large target task, indicating the change 
in difficulty was successfully detected by the LF/HF 
measure (p < 0.01; Fig. 1).  
 

p < 0.01 

p > 0.05 



 
Figure 5: NASA TLX survey results for small 0.10 target size (left) 
and large 0.35 target size (right). Results are presented as aggregate 
data for all participants (N = 11). TLX score for small target is 50.3 
± 0.9 (mean ± SEM). TLX score for large target is 29.3 ± 1.3 (Mean 
± SEM). p < 0.01 (paired t-test).  
 
           The NASA TLX supported our physiological 
findings that the small target was significantly more 
difficult than the large target (p < 0.01, paired t-test).  
 

IV.     DISCUSSION 

             This study evaluated the efficacy of HRV as a 
measure of cognitive workload during prosthesis 
usage. The results validate the methodology in using 
LF/HF heart rate variability analysis to measure the 
cognitive workload during prosthesis use. The p value 
of < 0.01 for the paired t-test demonstrates a strong 
correlation for the increase in LF/HF with increasingly 
difficult tasks. Although the standard error of the mean 
(SEM) is large for both the large and small target trials, 
this demonstrates the validity of this analysis method 
for a variety of individuals. 

Predetermined purposeful alteration of the 
target task for one target to be more difficult allows us 
to truly validate whether LF/HF is an accurate 
measurement of cognitive workload. In the future, the 
LF/HF ratio could be used to elucidate differences in 
cognitive workload between control algorithms. 
Illustrated by Fig. 4, the LF/HF ratio increased during 
the small trial compared to the large trial. In addition 
to validating the usage of this analysis method for 
prosthesis usage, the results concur with  previous 
studies which have demonstrated  HRV as an accurate 
measurement for cognitive workload in other settings 
[7][8][11]. 
           Completion of this validation enables us to use 
the measure in showing the cognitive benefits of other 
prosthesis advancements, such a sensory feedback and 
different control algorithms. Additionally, we would 
be able to compare the ease of use of advanced 
prosthesis control and commercial prothesis control.  
           This study opens a new pathway for more 
patient-centric evaluations of prosthesis 
advancements, which may lower prosthetic 

abandonment. This method of evaluation will be used 
further in this study as testing will continue with 
amputees with the “LUKE” arm with haptic feedback. 
This analysis method will be used to determine if 
haptic feedback decreases the cognitive workload of a 
task, resulting in better performance, control, and less 
abandonment. The system developed to measure and 
analyze HRV will be implemented into investigating 
the strain during prosthesis usage with and without 
haptic feedback. 
           The use of the Shimmer3 ECG unit provides 
some limitations to the study results. The Shimmer 
ECG model was chosen due to its portability and 
functionality over a long period of time. However, 
Shimmer utilizes a 5 lead ECG recording method 
which is less than the standard of the common use of 
12 lead ECG, which is most common  in hospital 
observation. Additionally, participants were given a 
picture illustration of proper ECG electrode placement 
and placed the electrodes themselves to limit intrusion 
by the experimenters. Improper placement by the 
participants could lead to increased noise in the ECG 
signal; however, noise was limited due to filtering 
parameters integrated to Shimmer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p < 0.01 
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