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Abstract: 

The craniocervical junction (CCJ), comprising the base of the skull and the first and second 
vertebrae in the cervical spine, is a vital junction in keeping the head stable. It is well known that 
individuals with Down syndrome (DS) commonly have instability in this region of the neck; 
however, it is unknown whether the shape of the bone or the stiffness of the ligaments in this region 
is the primary contributor to this. Historically, it is believed that laxity in the ligaments of 
individuals with DS solely leads to the looser connection seen in these patients. Using finite 
element modeling, this study attempts to quantify the contribution of bone morphology to this 
instability. 

Two CCJ finite element models (FEMs) were generated from age-matched pediatric patients, 
one with DS and one a normal control (Fig. 1). Computed tomography scans of the patients were 
used to create shells of the desired bony structures via segmentation, while soft tissues and 
ligamentous structures were added based on bony landmarks. Ligament stiffness values were 
assigned using published adult ligament stiffness properties. Range of motion (ROM) testing 
determined that model behavior most closely matched pediatric cadaveric data when ligament 
stiffness values were scaled down to 25% of those found in adults (Fig. 2). These values, along 
with those assigned to the other soft-tissue materials, were identical for each model to ensure that 
the only variable between the two was the bone morphology.  

The FEMs were then subjected to three types of simulations to assess their rotational ROM, 
anterior-posterior (A-P) translation, and axial tension. In ROM testing, a torque was applied to the 
skull to rotate it in all the cardinal directions of movement (flexion/extension, lateral bending, and 
axial rotation), and the resulting rotation was recorded as an Euler angle in relation to the base of 
the CCJ. During A-P translation, forces were applied to the skull to push it forward and backward, 
and the resulting displacement was recorded. In axial tension, the skull was displaced upwards by 
a set amount, the force required to do so was recorded for each model, and a structural stiffness 
was calculated. 

The DS model exhibited more laxity than the normal model at all levels for all of the cardinal 
ROMs (Fig. 3) and A-P translation (Fig. 4). The flexion/extension, lateral bending, axial rotation, 
and A-P translation predicted by the DS model were 40.7%, 52.1%, 26.1%, and 39.8% larger than 
the normal model, respectively. When simulating axial tension, however, the DS and normal 
models’ soft-tissue structural stiffness was nearly identical (Fig. 5), indicating that the ligaments 
in these FEMs behaved in the same manner.  

The increased laxity exhibited by the DS model in the cardinal ROMs and A-P translation, 
along with the nearly identical soft-tissue structural stiffness exhibited in axial tension, calls into 
question the previously held notion that ligamentous laxity is the sole explanation for 
craniocervical instability in DS.  



 

Figure 1. FEMs of the CCJ of a 3-year-old normal girl (left) and a 3-year-old boy with DS 
(right). The images are taken from PostView, where the models have been sliced along their x-

axis to show a cross-sectional view. In these models, TM is colored cyan, TL pink, facets orange, 
spring elements black, and cartilage green. 

  



 

Figure 2. Spring stiffness assessment using the normal model tested in flexion-extension (left), 
lateral bending (middle), and axial rotation (right) at 100%, 50%, 25%, and 10% of the adult 

ligament stiffness values available in the literature. 

 

 

Figure 3. DS (dotted line) versus normal FEM (solid line) predictions of ROM in flexion-
extension (left), lateral bending (middle), and axial rotation (right).   

  



 

Figure 4. DS (right) versus normal (left) FEM predictions of A-P translation: a downward load 
was applied and maintained (A), followed by anterior (B) and posterior (C) loads. 

 



 

Figure 5. DS versus normal FEM predictions of soft-tissue structural stiffness in axial tension. 


