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ABSTRACT

Many nations across the world, including the United States, face an impending shortage

of trained medical professionals and personnel. The development of a robotic healthcare

assistant would help alleviate this ongoing shortage in healthcare workers. For a robotic

healthcare assistant to be useful, it must facilitate human-like interactions and maintain

contextual understanding of its environment. In this work, we take steps toward endowing

healthcare assistant robots with the ability to anticipate the equipment needs of healthcare

providers without being explicitly asked. We utilize an automatically formulated knowl-

edge representation from web-based knowledge bases paired with a traversal algorithm to

achieve these objectives. Equipped with a proper knowledge base and rule-based traversal

algorithm, our robot will have the ability to retrieve relevant related information given a

medical condition or symptom.
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1.1 INTRODUCTION

A crisis is fast approaching in the United States due to a shortage of nurses and other

healthcare providers. It is estimated that the number of registered nurses entering the

workforce needs to double in 2020-2021 to address a predicted shortage of 1.1 million

nurses in 2022 [19]. Recent advances in artificial intelligence and robotics may open the

door for robots to help mitigate this crisis by acting as assistants to healthcare providers,

reducing the providers’ per-patient workloads, and enabling them to help more patients.

However, due to the complex, ever-changing nature of the medical field, it is infeasible to

pre-program a robot with the ability to properly handle every possible medical scenario.

Consequently, an effective robot healthcare assistant must be well-informed and adaptive.

Human healthcare assistants adapt to unique scenarios by using context and accumulated

knowledge to act intelligently. However, robots do not have the same ability to apply

semantic knowledge and contextual details to make inferences. For example, if a healthcare

provider says “This patient needs an IV.”, their assistant would know this implies they need

to go retrieve the proper supplies to do so. This includes knowing both what equipment is

involved in placing an IV and where these supplies are located. While this is obvious to a

human assistant, it is not at all obvious to a robot. For a robot to behave in such a way it

would need to be able to meaningfully and intelligently reason over some computational

representation of medical knowledge. Such a computational representation of knowledge

can be effectively formulated from existing structured content on the internet and then

efficiently reasoned over, enabling a robotic healthcare assistant to respond and operate in

a more applicable and intelligent manner. We make meaningful progress toward this goal

in two ways: (i) by leveraging existing web-based knowledge systems as computational
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representations called knowledge graphs and (ii) developing an algorithm for rule-based

inference on the knowledge graph to identify medical supplies needed by a human health-

care professional as they treat a patient, so that a robot assistant may proactively retrieve

them.

The first step is providing the robot with a knowledge base that includes information about

the healthcare domain in which it is working. There is an incredibly vast, and growing,

online literature base relating to medical procedures, diagnoses, and treatments. In order

to utilize this information to its fullest extent, the construction of an effective knowledge

graph must be automated. A knowledge graph is composed of nodes, or concrete concepts,

and edges, the thematic relations between two concepts. A knowledge graph is an ideal

technical tool as it facilitates knowledge retrieval and recommendation. In this work, we

leverage existing online knowledge systems, such as Wikipedia, as an implicit knowledge

graph, wherein the pages represent nodes and links between pages represent edges and

encode a close conceptual relationship.

The next step is utilizing this implicit knowledge graph to perform contextual reasoning.

An efficient healthcare assistant robot must be able to traverse the graph it is equipped

with in order to obtain relevant information. In this work we use the knowledge graph to

identify specific medical equipment required by a healthcare provider. With the returned

set of medical supplies, the robot would then be capable of retrieving this equipment from

a fixed location without the healthcare provider ever explicitly asking. Our robot takes

a single procedure or condition as input and determines what equipment is relevant to

performing the procedure or treating the condition. A robot equipped with a substantial

knowledge graph and a meaningful traversal algorithm has the means to act as an assistant
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Figure 1.1: An example of a scenario a robotic healthcare assistant may encounter and a
visualization of the information to be gained through our proposed method. In this case,
”Intubation” is used as the initial procedure and entry point into the conceptual knowledge
graph. The robot’s traversal from this page can be visualized by following edges in the
above graph. After this traversal, the touched pages are mapped to a set of available
supplies. The table shows a portion of these available supplies, and highlights any matches
found in green.

to a healthcare provider.

Consider a patient experiencing respiratory distress. A provider treating said patient might

address this symptom, depending on the severity, by saying, “This patient needs to be

intubated.” Our robot will recognize that “intubation” is the procedure to be performed on

the patient and identify the associated node in the knowledge graph. As seen in Figure 1, the

intubation page will then be used as the entry point into the graph. Figure 1 also depicts a

local portion of the knowledge graph around the intubation page, along with the equipment
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that might be retrieved based on the exploration of these pages. The algorithm explores

pages until it reaches a specified number of steps away from the entry page. Looking at

Figure 1, we would say that the anesethesia page is one step away from the intubation page,

and the catheter page could be two or three steps away depending on the path taken. We

also assign a score to each page to indicate relevance. While traversing, any links that have

a score greater than a set threshold will be queued to be visited. On each step the algorithm

adds the link occurrences from new pages to the current scores and checks for any that need

to be explored. A number of links with the top scores are then mapped to a set of equipment

available to the robot. Figure 1 shows a table with an example result of such a mapping that

identified a tracheal tube, anaesthesia, catheter, and bag valve mask as relevant equipment

for intubation. By automatically generating medically focused knowledge graphs from

web-based sources and developing pertinent traversal algorithms for knowledge retrieval,

this project takes steps toward making an intelligent and adaptive robot healthcare assistant

a reality.
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2.2 BACKGROUND

Autonomous robotic assistants have been an area of interest for research since the early

2000’s due to their extensive range of potential applications. In as early as 2001 there was

work being done on a surgical robotic assistant that had the capacity to work manually,

partly autonomously with shared control, or fully autonomously under supervision of a

surgeon [10]. There has also been work done towards a socially interactive robotic assistant

that would autonomously provide reminders and guidance for elderly residents of nursing

homes [16]. In the medical field these robotic assistants are often used to assist and improve

the precision of minimally invasive surgeries [11, 14, 17]. Robotic assistants have also

been envisioned at the patient’s bedside, listening for explicitly requested equipment from

a healthcare provider [3]. These previous works demonstrate the value of an effective

autonomous healthcare assistant, however in their current state they are limited in their

ability to automatically reason about medical context. This motivates further work in

automating the construction of a knowledge base that facilitates contextual reasoning for a

robotic healthcare assistant in dynamic medical scenarios.

Equipping a robotic healthcare assistant with a meaningful knowledge representation is a

key part of enabling knowledge retrieval and recommendation. A particularly promising

knowledge representation is the knowledge graph. There have been many different ap-

proaches to knowledge graph generation [2, 6, 15, 20, 21]. The generation of knowledge

graphs should be automated due to the vast amount of electronic medical information

available and the shortage of medical experts to manually construct the graph. One of the

challenges faced when attempting to perform this knowledge aggregation automatically is

that related resources are frequently scattered and disconnected, creating what is known as
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“knowledge islands.” Constructing a knowledge graph is the perfect solution to knowledge

islands as it can capture and present the intricate relationships between entities, even across

information systems. In the field of Traditional Chinese Medicine (TCM), Yu et al. perform

an initial, manual population of a database into a knowledge graph and use an automated

text-mining tool to extract entities and relations through semantic analysis on texts—though

these extractions must be validated by an expert [20]. This approach requires significant

human expert effort not only in validating the extractions, but also in rigorously examining

and clarifying data sources and entering them into the database for the initial construction

of the graph.

The construction of a knowledge graph to achieve things like knowledge retrieval, question-

answering, and knowledge recommendation has been studied in many other medical do-

mains. One approach to simplify this problem is to construct the knowledge graph over

a specific disease or topic, such as chronic obstructive pulmonary disease (COPD) or

knee osteoarthritis [6, 12]. The approach in [6] constructs the knowledge graph fully

automatically and then performs feature selection to select the most optimal subset of these

COPD specific relations. The resulting COPD diagnosis tool performed well in testing,

however, significant human effort was required on top of the constructed knowledge graph

to make it useful and reliable. Similarly, the approach in [12] performs well, but requires

a manually labelling and construction of a domain ontology of knee osteoarthritis from

which to generate the knowledge graph.

Constructing knowledge graphs over a broader range of topics or diseases is inherently

a more difficult task. Incorrect, irrelevant, and duplicate or synonymous relationships are

frequently extracted. Some works have utilized a semi-automatic approach, augmenting the
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efficiency of a machine with the accuracy of experts in the field. This helps to overcome

issues with natural language processing; such as complex concepts and relationships, het-

erogeneous data structures, poor data quality, etc. The Health Knowledge Graph Builder

uses this human-augmented technique, and quantifies the clinician effort to construct a

knowledge graph over just the cardiovascular domain to be about 2,158 days [21]. There

have even been human curated health knowledge graphs constructed for the purpose of

performing diagnosis or classification [1, 5, 9, 13]. Knowledge graphs constructed with

human validation and annotations are typically more accurate, however, they are often too

costly as they have to rely on a valuable and scarce resource—human experts.

The use of knowledge graphs extends to non-medical fields as well. IBM’s Watson uses

a knowledge graph, which enabled Watson to win at Jeopardy! by retaining enormous

amounts of information, simulating strong language skills, understanding what is being

asked, and accurately determining the likelihood of an answer [8]. Another application is in

accident investigations. One study constructed a knowledge graph by reusing the reasoning

knowledge from documents written by human experts on past accidents to extract causality

for some event. This was achieved using manually constructed rules and patterns that

specifically target and extract causal relationships from text [18]. This solution may be a

good approach over narrow or restricted topics, but by design is limited in its scalability by

the availability of both human experts and detailed analysis reports authored by experts.

Regardless of how the graph is constructed, an algorithm is needed to facilitate traversal

and information retrieval. It is challenging to traverse knowledge graphs due to difficulties

such as ambiguity in traversal queries, language considerations such as synonyms and

variation in dialect, inherent computational complexity, and a lack of prior knowledge of
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the underlying graph data. There are a variety of different techniques to refine a knowledge

graph, such as association rule mining for predicting relations and statistical methods to

identify potential errors [15]. Refining a knowledge graph generates more relevant results,

allowing for a less intelligent traversal algorithm to still perform well. Rules can also be

added to the traversal algorithm in order to provide knowledge recommendations, or fill

in missing pieces of information in the graph. Inferring relationships is very important in

facilitating more human-like interactions with robots. One approach achieves inference by

parsing instructions into verb frames, finding the incomplete frames, and completing them

by finding the highest probability among all possible combinations [4]. This results in a

much more robust representation of knowledge for the robot and the ability to act in more

potential scenarios. There are many different methods to construct a knowledge graph,

and even more methods for traversal and inference. It is no trivial task to provide a robot

with knowledge and the ability to reason as a human would, and there are many different

avenues in achieving this feat left to be explored.

In this work, we build upon these existing concepts by first formulating existing online

knowledge repositories as implicit knowledge graphs. We then present an algorithm that

traverses the implicit graph to infer related medical equipment in anticipation of healthcare

providers’ needs.

8



3.3 METHODS

We bypass the need to explicitly construct a knowledge graph by noting the knowledge

graph structure implied by the page connectivity of existing web-based knowledge systems

such as Wikipedia, i.e., its pages and how they internally link to each other. We note that in

this formulation, each page represents a node in an implicit graph with links between pages

representing edges. The resulting implicit knowledge graph provides context for our robot

healthcare assistant, enabling it to identify relevant medical equipment based on a given

medical procedure or condition. Our method takes an individual medical procedure or

condition as input and uses this as an entry point into the knowledge graph. We use defining

characteristics of the structure of the knowledge graph to formulate a traversal algorithm

that returns a set of objects related to the entry node. For example, since the knowledge

graph structure is based on linking directly related concepts, we can use the distance

between nodes to depict the strength of their relatedness. This is known in linguistics

as the phenomenon of co-occurrence. We also provide our robot with a dictionary of

available equipment and their locations. Then, after the traversal has been completed and

a set of pertinent objects has been returned, it is just a matter of mapping these to the set

of available equipment to see which are available for our robot to fetch. See Fig. 1.1 for an

overview.

Algorithm 1 shows the pseudo-code for the driver method, GetEquipment. This func-

tion takes as input four parameters that are used to shape the traversal, entry page, num steps,

threshold, and scoring func. The entry page is a single condition or procedure that

corresponds to a Wikipedia page. The TakeSteps and Traverse functions are then

to explore breadth-first from the entry page a set number of steps by following internal
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Algorithm 1: Pseudo-code for the driver method that initiates the traversal and
maps the top 100 results to the set of available equipment.
1 Function GetEquipment(entry page, num steps, threshold,

scoring func):
Input : The Wikipedia page on which to start the traversal, entry page, the

num steps to take from that page,the threshold at which to explore
pages, and the scoring func to be used. These are manually set by
the user.

Output: A list of potentially relevant, and available, medical equipment.
2 results = TakeSteps({}, num steps, 0, threshold, scoring func);
3 top 100 = results.sort()[:100];

// MapToSupplies reads, parses, & compares each line of the
supply closet with the input list, returning matches

4 return MapToSupplies(top 100);

links to other pages. Every link followed counts as a step, and the traversal ends after

num steps calls to Traverse. The threshold determines how many pages are explored

in each step by setting a value that the page score must exceed. The scoring func is

used to weight pages differently at different points in the traversal. This enables, for

example, weighting the links seen on directly related entity pages higher than links seen on

pages 2 steps away. In order to achieve this, we could modify the scoring function from

scoring func = 1∗curr score, to something like scoring func = 1
curr step

∗curr score.

This would help to reduce the impact of irrelevant links seen on further away pages, and

boost the scores of close pages that are more likely to be relevant. We utilize curr step as a

scaling parameter in scoring func because the number of steps away from the entry page

directly relates to a decrease in relevance, making it a crucial factor in generating a page’s

score. This parameter is passed along to the TakeSteps and Traverse function, along

with the num steps and threshold.

Algorithm 2 shows the pseudo-code for a recursive helper function that drives the traversal.
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Algorithm 2: Pseudo-code for a recursive method that will take num steps into
the graph, determining traversal order by a page’s score.
1 Function TakeSteps(page scores, num steps, curr step, threshold,

score func):
Input : The current set of pages and their scores, page scores, as well as the

total num steps desired and the curr step being performed.
Output: The set of pages and their updated scores after the full traversal has

been performed.
2 if curr step > num steps then
3 return page scores;
4 else
5 updated scores = Traverse(page scores, threshold, score func);
6 return TakeSteps(page scores, num steps, curr step+ 1, threshold,

scoring func);
7 end

This function will check that another step needs to be taken, and if so, makes the call to

Traverse which visits all input pages with a score greater than or equal to the threshold.

The specifics of the Traverse function are shown in Algorithm 3.

Algorithm 3 shows the pseudo-code for the traversal function. TakeSteps passes all of

the necessary information to the function, including the dictionary of page scores from

the previous step, the threshold at which to visit pages, and the scoring func to be used.

The list of potential pages to explore in this step is found by selecting any pages from

page scores with a score that is greater than or equal to the threshold. The threshold

is used in order to maintain the relevance of the results being explored, since irrelevant

pages may be linked once on a Wikipedia page, but are not going to be linked multiple

places. These high-scoring pages are explored one by one, but only if they have not yet

been visited. A page is considered to have been ”visited” once our algorithm follows the

link to the page and scrapes it for link elements. This is performed in the call made to
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Algorithm 3: Pseudo-code for the Traversal function. Given a set of pages and
their scores, a page scoring function, and a threshold to guide the traversal path,
returns a dictionary of the pages seen and their scores. Called recursively by
TakeSteps.
1 Function Traverse(page scores, threshold, scoring func):

Input : A dictionary of pages and their current scores page scores, the
threshold at which to explore pages, and the scoring func to be
used.

Output: A dictionary of potentially relevant pages (medical equipment) and
their scores, updated scores

2 toExplore = page scores where score ≥ threshold;
3 updated scores = {};
4 for current in toExplore do
5 if !current.visited then
6 curr scores = current.getLinkedPages(scoring func);
7 updated scores.addOrUpdate(current, curr scores);
8 visited.add(current);
9 end

// Do nothing if the page has already been visited

10 end
11 return updated scores;

getLinkedPages, which takes the scoring func as input. In getLinkedPages,

before the dictionary of results is returned, the scoring func is applied to the page scores.

The resulting page score dictionary (see curr scores on line 6 of Alg. 3) contains all the

links found on the current page as well as its score. If the scoring func = 1 then the

page score is entirely based on the occurrences of a link on the page. A single link on any

given page is typically found somewhere between 0 and 5 times. We visit the Wikipedia

page, find all link elements, aggregate the number of occurrences of each link into a score,

and finally apply the scoring func for the dictionary of page scores for the current page.

These scores are added into the current working page-score dictionary for the traversal. If

the page does not yet have a score, it is simply added. If the page already has a score,

the two are summed for the new score. The page-score dictionary for the traversal is then
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returned—to be used for the next step or to be mapped to available supplies.

The number of steps, threshold, and scoring function parameters allow for a fine tuning of

our algorithm and the results it produces—regardless of the knowledge base it’s equipped

with. The pages that are seen and referenced the most across the traversed pages will have

the greatest scores, and should be the most relevant to the entry page.
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4.4 RESULTS

Our method achieved multiple promising results on different example procedures/conditions.

For each entry point into our graph we mapped the results to a supply closet generated

from the “Comprehensive List of Basic Medical Supplies” by the Bureau of Industry and

Security [7]. A set of available equipment was parsed from this document and manually

revised so that groups of equipment are separated into individual pieces of equipment. The

resulting set of equipment, used as a conceptual supply closet, is shown in Table 4.1. The

output of this mapping is the list of supplies that our robotic healthcare assistant would

be able to fetch. Table 4.2 and 4.3 show items successfully identified by our method

as potentially relevant for four different conditions or procedures using different sets of

parameter values. In Table 4.2, results were achieved with only 2 or 5 steps, and a simple

implementation of a score decrementing function where the scores of links seen on the entry

page are doubled. That is, on the entry page links are weighted as 2 ∗ link occurrences

while links seen on other steps contribute link occurrences to a links overall score. This

heavy weighting of links on closer pages, paired with a threshold that increases as the

distance from the entry page increases, ensures that we do not explore too far breadth-wise

into the knowledge graph and obfuscate our results. After each traversal in Table 4.2 and

4.3, the pages with the top 100 scores were searched for in the set of available supplies to

yield the results recorded below.

As shown in Table 4.2, taking 2 or 5 steps into the graph yields the same results for

anaphylaxis, intubation, and IV. Examining the path taken for each traversal revealed that

for both anaphylaxis and intubation there were no additional pages visited in steps 3, 4 or

5. Both traversals starting at the anaphylaxis page visited a total of 12 pages and returned
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Table 4.1: Comprehensive List of Basic Medical Supplies

Syringe Ear Plugs Bandages IV Stand
Cannula Ear Muffs Gauze Instrument Stand
Needle Otology Sponges Medical Tape Heating Pad
Catheter Ear Syringes Surgical Sutures Ice Pack
Catheter Kit Clinical Swabs Surgical Staples Nitrile Gloves
Coils Clinical Applicators Suture Removal Kit Surgical Mask
Guidwire Specimen Collector Staple Removal Kit Apron
Medical Tubing Urine Container Tourniquet Medical Adhesive
Laryngoscope Antiseptic Wipes IV Tubing Adhesive Remover
Laproscope Iodine Wipes IV Sugar Solution Capnograph
Sinuscope Splint Tegaderm dressing CPAP Machine
Blood Pressure Gauge Cane Lactated Ringers Medical Flowmeter
Blood Pressure Cuff Crutches Saline Ventilator, Adult
Glucose monitor Wheelchair Antiseptic Non-rebreather mask
Defibrillator Walker Anesthesia Oxygen
Stethoscope Pillow Topical Anesthetic Oxygen Tank
Speculum Blanket Thermometer Oxygen Tubing
Medical Scissors Sheets Bedpan Pulse Oximeter
Forceps Gown Emesis Bag Spirometer
Blood Lancets Scrubs Syringe Aspirator Nebulizer
Endotracheal tube Patient Socks Bladder Scanner Ventilator, pediatric
Tracheal Tube Surgical Shoe Covers Urostomy Pouch Scoliometer
Nasal Cannula Bag valve mask Pads Goniometer
Nasogastric Tube Ventilation Face Mask Tampons Hand Sanitizer
ECG machine PEEP Valve Enema Set Medical Penlight
EKG machine Stents Stockinettes Scalpel
12-lead Wires Lubricant Surgical clean-up kit Clamps
4-lead Wires Epinephrine Benadryl Surgical Clips
Cardiac Pacemaker EPI Autoinjector Albuterol Ranitidine
Cardiac Monitor Norepinephrine Famotidine Zantec
Ant-acids Aspirin Morphine Antidepressants
Acid Suppressants Blood Thinners Nitroglycerin Cortisone

3 relevant pieces of equipment. The intubation page, however, only visited one page in

both traversals—Tracheal Intubation. Despite only visiting one additional page, 6 of the 7

medical supplies returned were relevant to intubating a patient. The 5 step traversal from

15



Condition Anaphylaxis Chest Pain
Steps 2 5 2 5

Supplies Epinephrine Epinephrine Electrocardiogram Electrocardiogram
to EPI Autoinjector EPI Autoinjector Aspirin
Fetch Norepinephrine Norepinephrine

Condition Intravenous (IV) Therapy Intubation
Steps 2 5 2 5

IV Sugar Solution IV Sugar Solution Catheter Catheter
Saline Saline Anesthesia Anesthesia

Supplies Cannula Cannula Tracheal Tube Tracheal Tube
to Oxygen Oxygen Topical Anesthetic Topical Anesthetic
Fetch Nasal Cannula Nasal Cannula Bag Valve Mask Bag Valve Mask

Oxygen Oxygen
Epinephrine Epinephrine

Table 4.2: Equipment correctly identified by our method with a linear score function. The
above performance was achieved using 2 or 5 steps, a page score of 2 ∗ link occurrences
on directly related pages, and a threshold of 5 for the first step and (steps away ∗ 5) + 5
for subsequent steps. Pages with the top 100 scores were mapped to the set of retrievable
supplies in all of the above scenarios.

the IV page visited just one additional page than the 2 step traversal, for a total of 24 pages.

Again, there were no additional pages visited in steps 4 or 5 for this 5 step traversal. The

IV traversals both returned 5 pieces of equipment, of which 3 were relevant. The difference

in the 2 step and 5 step traversal from the chest pain page was much larger than the other

scenarios, visiting an additional 246 pages in steps 3, 4 and 5 for a total of 289. Taking 2

steps from the chest pain page resulted in 2 pieces of relevant equipment, while taking 5

steps only resulted in 1 piece of relevant equipment.

Table 4.3 shows results for 2 and 5 step traversals of the same set of 4 conditions and proce-

dures as Table 4.2. However, to achieve these results the threshold was 2+ curr step2 and

the scoring function link occurrences ∗ (1/curr step). Removing the heavy weighting of
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Condition Anaphylaxis Chest Pain
Steps 2 5 2 5

Supplies Norepinephrine Norepinephrine Aspirin Aspirin
to Epinephrine Epinephrine Electro-
Fetch Oxygen Cardiac

Pacemaker
cardiogram

Condition Intravenous (IV) Therapy Intubation
Steps 2 5 2 5

IV Sugar Solution Catheter Catheter
Saline Tracheal Tube Tracheal Tube

Supplies Oxygen Anesthesia Anesthesia
to Cannula Topical Anesthetic Topical Anesthetic
Fetch Bag Valve Mask Bag Valve Mask

Oxygen Oxygen
Epinephrine Epinephrine

Table 4.3: Equipment correctly identified by our method with a nonlinear score function.
The above performance was achieved using 2 or 5 steps, a page score of link occurrences∗
(1/curr step) for all pages, and a threshold of 2 + curr step2. Pages with the top 100
scores were mapped to the set of retrievable supplies in all of the above scenarios.

directly related entities and lowering the threshold allows our algorithm to explore further

into our conceptual graph. While this did not change the results for the intubation page,

we saw small variations in the anaphylaxis and chest pain equipment and a significant

change in results from the IV page. The intubation page, which contains much less content

than the others, takes the same traversal in this trial as the trial from Table 4.2 and yields

the same set of relevant results. With these new parameters the anaphylaxis page only

resulted in 2 relevant pieces of equipment from the 3 returned. Taking 2 steps returned

oxygen rather than an epinephrine auto-injector as in Table 4.2, and when taking 5 steps

a cardiac pacemaker is instead returned. The results for chest pain in Table 4.3 are very

similar to those in Table 4.2, however, in 4.3 the 5 step traversal explores hundreds of more

pages on pharmaceutical drugs that were not seen in 4.2. Using this set of parameters to
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traverse from the IV page was much less successful with more steps. With only 2 steps

there were 3 relevant pieces of equipment in the 4 returned. When the traversal expands to

5 steps we explore around 1,500 additional pages than in the 2 step traversal. The resulting

top 100 pages had become completely irrelevant, including “Freediving,” “Scuba Schools

International,” “Diving Bell,” and “Sheck Exley”.

Every trial, except taking 5 steps for IV in Table 4.3, was able to identify at least one

piece of relevant equipment. There were cases in which we failed to return some pieces

of equipment that would be expected by a healthcare provider. For example, to place

an IV you need IV tubing and a syringe. Neither of these supplies were included in the

results for either set of parameters. Additionally, there were cases in which pieces of

equipment were returned that would not be needed by a healthcare provider in that situation.

For example, the results in both tables returned epinephrine as standard equipment for

performing intubation when it is not. In Table 4.2, a nasal cannula is returned for both IV

trials but is not necessary to place an IV.
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5.5 CONCLUSION

In this thesis we propose that equipping a robot with a relevant knowledge graph and traver-

sal algorithm can provide context for a robotic healthcare assistant in healthcare scenarios.

Healthcare providers go through extensive training to become experts in their fields and

their time is very valuable. An efficient and autonomous robotic healthcare assistant could

help to alleviate the shortage in healthcare workers currently seen in the United States. To

help achieve this, we propose endowing a robot with the ability to reason about equipment

necessary for medical procedures by equipping it with the proper knowledge system. Our

work uses web-based knowledge bases as an automatically formulated implicit knowledge

graph, leveraging internal page linking systems and the phenomenon of co-occurrence. The

achieved results show that our algorithm is able to successfully extract one or more pieces

of relevant equipment that can be retrieved given a medical condition or procedure as input.

It is clear from the trials completed in this work that the content used to create the knowl-

edge graph quickly becomes a limiting factor in the relevancy of results. The parameters

used to compute the results in Table 4.1 and 4.2 produced noticeably different traversal

paths, but extremely similar results. When examining the top 100 pages that are mapped to

the set of available supplies, it shows that the actual results of the traversal differ more than

is immediately apparent. However, because we are using texts from a general knowledge

source instead of a medically focused knowledge base, there are inherently fewer nodes

representative of the medical equipment we are interested in. For example, if a patient

is experiencing chest pain a healthcare provider would ensure that they have a way to

measure and monitor their blood pressure. In all of the above trials for chest pain, “blood

pressure” was one of the pages being mapped to the supply closet. While our set of supplies
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includes “blood pressure monitor” and “blood pressure gauge,” our robot was only made

aware of the idea of blood pressure, and is not equipped with the ability to reason about the

results returned from the traversal—just to search them for equipment the robot has access

to. Additionally, due to the structure of Wikipedia, some pages contain far less information

and link very few pages. This makes it more difficult to tune a set of parameters (number of

steps, threshold, and scoring function) that will generalize to all entry pages. The intubation

page is like this, containing only 40 conceptual edges to other related pages. On the other

hand, the IV page links 322 related pages and the tracheal intubation page explored in the

intubation traversal links 590. When replacing the threshold in Table 4.2 with 2+curr step,

so that the intubation traversal is able to explore more than one page, taking 5 steps from

the IV pages explores over 21,000 pages.

In the future, we intend to build upon the methods outlined in this paper by augmenting the

knowledge graph with more medically focused texts and encoding more complex relation-

ships between entities in the graph. Additionally, our method currently is provided with the

condition or procedure as input, and in the future we envision automatically identifying this

by listening to the providers spoken words. Augmenting our knowledge base with medi-

cally focused texts will help to eliminate the limiting factors discussed above. Parsing more

complex relationships from these texts and encoding them into our knowledge graph will

allow for a more intelligent and intentional traversal of the graph. To achieve this we could,

for example, use a natural language parser to perform relationship extraction and semantic

parsing to retrieve a more detailed encoding of the relationship between two objects. Our

knowledge graph would then have different relationships encoded into edges, more than

just the “is related to” relationship that can be inferred in our implicit web-based knowledge

graph. Then as the graph is being traversed we would have additional information about
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the relationship they share. Consider a graph that is connected based on the relatedness of

two objects without regard for the context in which they are related. Entering the graph at

“anaphylaxis” could reasonably return the following set of entities: [allergy, epinephrine,

hypotension, vasodilation, penicillin]. Our robot assistant would detect that it has access to

epinephrine and penicillin and retrieve them both. However, penicillin has shown up here

because it is a common trigger for anaphylaxis, not a treatment. To avoid this behavior,

a traversal algorithm could prioritize following edges that encode relationships like “is a

treatment for,” “supply with,” “is treated by,” etc., rather than following edges based on

how many times they have been seen thus far. Taking into account the relationship an edge

encodes when traversing is comparable to how graph search algorithms use associated

edge weights to make more educated decisions. A robotic assistant with or without this

additional context embedded into its knowledge graph will have the ability to assist a

human provider in a way that has not been accomplished before.

The work presented in this thesis makes meaningful progress toward endowing an au-

tonomous robotic healthcare assistant with the ability to anticipate equipment needs of

healthcare providers. This may allow experts in the healthcare field more time with their

patients, enhancing the quality of care they provide and improving patient outcomes.
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