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ABSTRACT 

This research utilizes an experimental approach to examine the impact that 

security design has on market outcomes. Security design is operationally defined 

as the correlation between the two risky assets in the experimental markets. 

‘Market outcomes’ include qualities such as price and allocational efficiency, but 

this research gives special attention to allocational efficiency. The original 

intention of this research was to conduct experiments consisting of trading 

sessions carried out by human subjects, however the ongoing pandemic has made 

it impossible to gather enough people in one physical location to run human 

trading sessions. As a result, this research instead focuses on results from 

simulations consisting of two mean-variance utility-optimizing ‘robots’ trading 

against each other. The primary hypothesis of this research is that markets 

consisting of securities that are negatively correlated will be more allocationally 

efficient. At first glance our results are somewhat mixed both in favor of and 

against the hypothesis, however some further analysis gives a clearer picture of 

what may be driving the results. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thank you to Elena and ULEEF for continued support and guidance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 
 

TABLE OF CONTENTS 
 
 

ABSTRACT ii 
 
INTRODUCTION 5 
 
RELATED LITERATURE 9 
 
EXPERIMENTAL DESIGN 10 
 
THEORETICAL FRAMEWORK 15 
 
RESULTS 21 
 
CONCLUDING DISCUSSION 26 
 
REFERENCES 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



5 
 

INTRODUCTION 

 

One of the most notable changes in prevailing investment principles to occur over the last 

several decades is the rising popularity of a passive investment style. Low-cost, highly 

diversified securities such as index mutual funds and exchange-traded funds (ETFs) have 

received high praise in recent years as one of the best methods available to the average investor 

looking to grow their wealth over time.  

Eugene Fama’s introduction of the efficient market hypothesis (EMH) in 1970 and the 

extensive empirical testing of the theory that followed (see Carhart (1997), Fama and French 

(2010), and Busse et al. (2014) for examples) and provided support of the theory has likely 

played a large role in spurring the shift. Grossman (1976) conducts experiments demonstrating 

the ability of markets to aggregate information by collecting all individuals’ private signals and 

forming a resulting market price that is itself more informative of fundamental value than each 

individual’s private signal. Increasing numbers of investors have decided that paying exorbitant 

fees to managers to actively invest their funds is usually not worth it when the option to buy an 

index and earn the market return at low or no cost is available. A report completed by the Federal 

Reserve gives evidence of the shift, writing that “As of March 2020, U.S. stocks held in passive 

[mutual funds] and ETFs accounted for about 14 percent of the domestic equity market, up from 

less than four percent in 2005” (Anadu et al. 2020). Another report conducted by BlackRock in 

2017 concluded that, at the end of 2016, 18% of global equity was owned by passive investors 

(BlackRock 2017). Bogle (2016) also provides a useful overview of this shift. See Figure 1 for a 

visual representation of this shift. 

 

Figure 1. Total assets in active and passive MFs and ETFs and passive share of total from 1995 

to 2018. Reprinted from: McCabe, Patrick. “The Shift from Active to Passive Investing: 

Potential Risks to Financial Stability?” Harvard Law School Forum on Corporate Governance. 

29 Nov., 2018. Source: Morningstar, Inc. 
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One observation to be made in regards to the shift is that index funds tend to be much 

more highly positively correlated with each other than other types of securities. It is essential to 

think about how the changing nature of assets held globally changes the types and magnitudes of 

benefits (or costs) that the financial system is capable of providing for/imposing on society. This 

research contributes to understanding of how markets consisting of more positively correlated 

assets may impact their ability to allocate resources efficiently. We use experiments to examine 

market equilibration processes and outcomes as a result of imposed fundamentals and 

specifically to focus on what types of security design lead to the best (most efficient) allocational 

outcomes. Security design is defined here as the correlation between assets in the market.  

The rise in popularity of securities such as ETFs and index funds that are more conducive 

to a passive investment strategy has already gained extensive attention from academics, 

practitioners, and other interested parties. However, the vast majority of work done so far has 

been empirical in nature. Empirical methods are inherently unable to comprehensively (or 

convincingly) answer all questions related to understanding what this new composition of assets 

in global markets means for policy, regulation, etc. Specifically, while empirical methods are 

often to used to address questions of price efficiency in markets, these methods are severely ill-

suited to address another equally important component of market effectiveness – allocational 
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efficiency. Allocational efficiency refers to the idea that all market participants have optimized 

their holdings with respect to their beliefs/preferences. A market participant’s beliefs and 

preferences include characteristics such as attitudes towards risk, attitudes towards ambiguity, 

beliefs about current or future states of the world (possibly based on signals a participant may 

have received that could have been public or private), etc. Allocational outcomes are hoped to be 

Pareto-optimal, implying that no agent can be made better off without simultaneously making 

another agent worse off. Allocational efficiency cannot be tested using field data as the 

researcher has no access to the composition of individual portfolios, and even less so to the 

preferences of individuals. The central question of this research is what impact does the 

correlation between assets in a market have on the efficiency of the given market, with special 

attention given to allocational efficiency. 

 To elaborate further on the appropriateness of an experimental approach to answer the 

questions posed here, consider that there is substantial evidence and agreement suggesting that 

there are forces at work in markets which drive them to equilibrium (see, for example, Arrow 

and Hahn (1971)). There is much less agreement, however, on what these forces are that drive 

markets to equilibrium. Furthermore, it is very difficult to learn about these driving forces 

through the analysis of historical data because while the price data is of high quality, not enough 

is known about the fundamentals of past markets. This represents a great opportunity for 

experimental finance, where markets can be created in a laboratory setting. In these laboratory 

markets, researchers can not only know what the fundamentals are of the markets they create but 

also control and change them to see if outcomes change. As a result, the laboratory can produce 

counterfactual evidence, an impossibility in empirical data. It will thus allow us to ask questions 

not only about price and allocational efficiency but also about what types of security structures 

best facilitate achieving those efficiencies. In particular, experiments make it possible to create 

market structures with varying degrees of correlations between securities, while keeping all else 

the same, and thus isolate the effect of correlations on efficiency.  

One result of general equilibrium theory proposed by Walras in Elements of Pure 

Economics is that the correlation between assets should not affect the ability of markets to reach 

a Pareto-efficient equilibrium. The extant theory regarding efficiency of free markets posits that 

the only conditions needed to support an efficient equilibrium are locally non-satiated 

preferences, complete markets, and perfect information. This would suggest that the correlation 
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between assets in the market have no impact on the ability of the market to reach equilibrium. 

That being said, a recent paper by Asparouhova, Bossaerts, and Ledyard has produced results in 

support of a more nuanced equilibration theory in which asset structure has an effect on 

allocational outcomes. In particular, the equilibration dynamics imply that the path to 

equilibrium depends on the variance-covariance matrix between assets.  The experiments 

discussed in this paper ask whether or not this theory of allocational efficiency as related to 

security design will be supported. Should the experiments end up supporting the hypothesis, the 

project could yield substantial policy implications regarding what types of security designs lead 

to optimal allocational outcomes. 

This research uses a trading platform called Flex-E-Markets to create Continuous Double 

Auction (CDA) markets consisting of two risky securities (A and B) and a riskless security 

(cash). The CDA setting is used for its evidenced ability (as in Smith (1962)) to support 

convergence to equilibrium in single commodity markets as well as in multiple-asset markets 

(see also Asparouhova, Bossaerts, and Plott (2003), for example), which is largely a result of its 

open book and consequent shared information. The theoretical (equilibrium) framework of this 

research is that of the Capital Asset Pricing Model (CAPM) developed in Sharpe (1964), Lintner 

(1965), and Mossin (1966). This framework is ideal mostly for its ability to price risky assets 

according to the extent to which these assets co-vary with aggregate risk in the market (as 

evidenced in experiments in Bossaerts and Plott (2004)). In this way, the equilibrium framework 

is in line with the most important features of modern asset pricing theory.  

In this research we report results from simulations in two-person economies with two 

risky assets and cash. Individuals are differently endowed with the two assets – called “A” and 

“B” – and cash, and are then invited into a marketplace to trade with each other. Imposition of 

the mean-variance utility that results from CAPM encourages the individuals to trade away the 

idiosyncratic risk inherent in their respective endowments. Keeping state-contingent endowments 

and individual preferences the same, the simulated agents participate in three different treatments 

defined by the security’s payoffs, and more importantly, their covariances. Equilibration paths 

and resulting market outcomes can then be compared across treatments to examine differences 

that arise as a result of varying the security design. The original intention of this research was to 

examine the impact of security design on market outcomes by having human subjects participate 
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in trading in these markets in a controlled laboratory setting. The envisioned economy was the 

replica of the two-person economy1.  

Simulations using mean-variance optimizing (MVO) trading agents that are described in 

more detail in later sections of this research were originally intended to be used as a proof of 

concept and to develop preliminary results before actual sessions with human subjects were 

conducted. However, the ongoing global pandemic has made it impossible to gather enough 

human subjects into one physical location as would be required to conduct the desired 

experiments. Due to this, the focus of this research was re-directed towards the simulations using 

the algorithmic trading agents. Results from these simulations are what will be discussed in the 

remaining sections of this paper.  

The next section includes a review of related literature, which is followed by a 

description of the experimental design given to help illustrate the theoretical framework, which is 

then explained more generally in the section after, results are then given, and finally some 

concluding discussion finishes.  

 

RELATED LITERATURE 

 

This research uses an experimental approach to further understanding of how the 

correlation between assets in a market may affect the equilibrium achieved by such a market and 

the path, both of prices and holdings of the assets, that the market may follow to reach said 

equilibrium. In doing so, this research also adds to the large body of literature that tries to 

understand the potential impacts on market outcomes of the increasing popularity of securities 

that are commonly used as part of passive investing strategies such as index mutual funds and 

ETFs. The first index fund was created in 1975 by John Bogle, making this type of security now 

45 years old in the year (2020) in which this is being written. Although such investing practices 

have not become largely popular until more recent years, academics and other interested parties 

have dedicated substantial efforts to researching the topic.  

For example, Brogaard, Ringgenberg, and Sovich (2019) gives empirical evidence of the 

real economic impact that index investing may have. The research focuses on commodity 

 
1 Debreu and Scarf (1963) define the replica economy as one that has a finite number of agents of the types of the 
original economy. In the case of a replica of a two-person economy, this implies having equal number of agents of 
the two types. 
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indices, and uses a difference-in-differences framework applied to the spike in popularity in 

commodity index investing that occurred around 2004 to examine the impact that the spike had 

on different firms. They refer to this rise in popularity of commodity index investing as the 

“financialization” of commodity markets. The authors try to isolate the effect that index 

investing has on firms by dividing all firms included in the study into two groups: index 

commodity firms and non-index commodity firms. Index commodity firms are defined as firms 

with substantial exposure to index commodities, as a result of these firms using index 

commodities heavily in their business. The research finds that “following financialization, index 

commodity firms experience a 6% increase in costs and a 40% decrease in operating profits 

relative to non-index commodity firms.”  

Brogaard et al. (2019) also tries to understand the mechanisms underlying the harm that 

index investing seems to do to firms. The research focuses on two main channels through which 

the negative impact may arise: a budget constraint channel and a feedback channel. The budget 

constraint channel can be summarized by the intuition that increased index investing in a 

commodity causes higher prices and volatility for the commodity, which in turn forces firms that 

use the commodity to either raise prices or accept lower profit margins, either of which will 

decrease profits for the firm. The feedback channel, as explained by the authors, “argues that 

financialization impacts firm performance because it changes the informational content of prices, 

which then impacts firm production decisions.” Their results provide evidence suggesting that 

both channels play an important role in the harm done to firms by index investing.   

Sushko and Turner (2018) discusses the rising popularity of passive investing as 

evidenced by recent outflows of funds from actively managed mutual funds compared to stable 

passive mutual fund flows. The work also discusses possible implications of this shift related to 

pricing capabilities of markets that are increasingly inhabited by passive investors. Lastly, the 

work highlights the link between this research and the passive investing literature by noting the 

potential for this shift to result in markets consisting of assets that are more positively correlated.  

Many of the attempts to study the potential impacts that rising popularity in passive 

investing may have on the ability of markets to effectively allocate resources focus on price 

efficiency, or the ability of a given market to price assets according to their underlying 

fundamental values. This is a logical place to start given the intuition that rising numbers of 

passive investors in markets may mean fewer active participants conducting the costly but 
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necessary information acquisition needed to keep prices accurate. A subset of the index investing 

literature focuses on commodity markets to try and understand potential impacts on prices and 

volatility, with varying results. Some of this work, such as Stoll and Whaley (2010) and 

Hamilton and Wu (2015) find that increased index investing in commodity markets did not 

impact the prices and volatility of the underlying commodities. Other work in the subfield, 

however, such as Singleton (2015) and Henderson et al. (2015), do find evidence of such price 

effects.  

Examples of empirical work on impacts of index investing not limited to commodity 

markets also abound. Irwin and Sanders (2011) speaks to the possible impact on price efficiency 

that index funds may have in their examination of the role that such funds played in the 2007-

2008 asset pricing bubble. Ben-David et al. (2013) provides empirical evidence suggesting that 

ETFs increase the intraday and daily volatility of the individual stocks of which they are made 

up. Wermers and Yao (2010) finds that “active funds increase the price efficiency of stocks 

through their trades” and also “that stocks with ‘excessive’ levels of passive fund ownership and 

trading exhibit more long-term pricing anomalies as well as a larger price reversal following 

trades.” Israeli et al. (2017) comes to similar conclusions regarding the potential implications 

that increased passive investing may have for price efficiency. Lastly, Coles, Heath, and 

Ringgenberg (2018) finds that “while index investing changes investor composition and 

information production, it does not alter price informativeness.” Note, importantly, that all 

studies mentioned so far are of an empirical nature and also that they mostly focus on the price 

efficiency of markets. Unfortunately, empirical studies are unable to examine all the ways in 

which passive investing and higher positive correlation among assets may impact the 

effectiveness of markets.  

The difficulties associated with testing allocational efficiency empirically represent a 

great opportunity for experiments. Early work on experimental asset markets such as Plott and 

Sunder (1982), Forsythe at al (1982), and Friedman et al. (1984) focus on fundamental topics 

such as whether or not prices converge to their expected equilibrium in experimental markets and 

the ability of market participants to effectively smooth their consumption via participation in 

trade. Carbone et al. (2020) is an example of recent research that builds on these early works, 

focusing on experimental asset market outcomes such as price efficiency in different types of 

asset markets. Specifically, the work compares market outcomes between a long-term asset 
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market and a short-term credit market. The two markets are theoretically equivalent, however the 

short-term credit market delivers better pricing results, and, importantly, significantly better 

allocational efficiency results. The authors hypothesize that pricing the short-term credit 

instrument as well as using it for consumption planning is cognitively less taxing than using a 

long lived consol bond. Crockett et al. (2019) also conducts asset pricing experiments, focusing 

on parsing out what types of assets incentivize participants to more effectively smooth their 

consumption over time. Asparouhova, Bossaerts, and Ledyard (2019) (ABL from now on) and 

Bossaerts, Plott, and Zame (2007) show that, in comparison to price efficiency, there is less 

certainty that markets achieve allocational efficiency in a timely manner. Such results highlight 

the need for further research on the topic. An important step towards understanding how markets 

might improve the speed and accuracy with which they move towards allocational efficiency is 

understanding the forces at work in a market that drive the equilibration process. ABL also 

produced results suggesting that allocational outcomes are closer to Pareto-optimal when 

securities are structured to correlate negatively. This finding is largely what drove the main 

hypothesis of this project. 

 

EXPERIMENTAL DESIGN 

 

This study focuses on 3 treatments: positive, negative, and zero correlation between the 

two risky assets in the market. Treatments are indexed by 𝑗 for 𝑗 = {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑛𝑒𝑔), 𝑧𝑒𝑟𝑜,

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑝𝑜𝑠)}. Note that assets are defined by their payoffs in each of three potentially 

realizable states: X, Y, and Z, each of which occur with equal probability (1/3). An asset that 

does not have the same payoff in all three possible states is deemed risky. Tables 1-3 are given 

below and describe the payoffs of the assets in each of the three treatments, with the correlation 

between A and B in treatment j, denoted 𝜌𝑗,𝐴𝐵, given directly below each table. Notice that the 

payoffs of Risky Asset A do not change across the three treatments. Rather, the payoffs of A are 

held constant across treatments while the payoffs of B are manipulated to induce the desired 

correlation between A and B for each treatment. Also note that cash always pays out 1 regardless 

of state, treatment, etc. (cash is riskless). In all treatments, all assets have an expected payoff of 

$1.  

Table 1. Asset Payoffs (negative structure) 
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State X Y Z 
Stock A $2 $0 $1 
Stock B $0.50 $1 $1.50 

Cash $1 $1 $1 
𝜌𝑛𝑒𝑔,𝐴𝐵 = −0.5 

Table 2. Asset Payoffs (zero structure) 

State X Y Z 
Stock A $2 $0 $1 
Stock B $1.50 $1.50 $0 

Cash $1 $1 $1 
𝜌𝑧𝑒𝑟𝑜,𝐴𝐵 = 0 

Table 3. Asset Payoffs (positive structure) 

State X Y Z 
Stock A $2 $0 $1 
Stock B $1 $0.50 $1.50 

Cash $1 $1 $1 
𝜌𝑝𝑜𝑠,𝐴𝐵 = 0.5 

Once asset structures producing the desired correlations for each treatment were arrived 

at, endowments of these assets for each individual type were left to be determined. These asset 

endowments also vary for each individual across the treatments. This is done deliberately to keep 

the Arrow-Debreu endowments (endowed wealth) constant across all three treatments. Arrow-

Debreu (AD) endowments are the distributions of wealth across the three states of nature.  

Further explanation of how this wealth-endowment equivalence is achieved and its importance is 

given in the following section. Tables 4-6 given below describe asset endowments for each 

individual Type in each treatment. 

Table 4. Initial asset endowments (negative structure) 

Type Asset A Asset B Cash  
I 100 200 $160 
II 220 120 $120 

Market 160 160 $140 
 

Table 5. Initial asset endowments (zero structure) 

Type Asset A Asset B Cash  

I 50 -100 $510 
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II 190 -60 $330 

Market 120 -80 $420 

 

Table 6. Initial asset endowments (positive structure) 

Type Asset A Asset B Cash  

I 0 200 $260 

II 160 120 $180 

Market 80 160 $220 

 

A more general explanation of Arrow-Debreu (AD) equivalence is given in the following 

section but consider the following specific example to help illustrate for the time being. Focus on 

individual 2’s endowment in the positive treatment. Their endowment of 160 units of A provides 

a state contingent wealth of 320, 0, 160 in states X, Y, and Z, respectively. Their endowment of 

120 units of asset B provides wealth of 120, 60, 180 in each of the three states. These 

endowments, combined with their endowed cash of $180 (with invariant pay across states), 

provides individual 1 endowed wealth of 620, 240, and 520 in states X, Y, and Z (respectively). 

The vector (620, 240, 520) is individual 1’s AD endowment. The endowments for each 

individual in each of the three treatments provided above all result in identical AD endowments. 

AD endowments are somewhat arbitrary but ultimately arrived at by some amount of trial and 

error in the process of matrix algebra described in the following section. AD endowments are 

somewhat arbitrary but ultimately arrived at by some amount of trial and error in the process of 

matrix algebra described in the following section. The important quality of the AD endowments 

that were ultimately settled on is that they create sufficient difference across individuals, giving 

enough room for utility gains from trading away from the AD endowments. The mean-variance 

preferences of the market participants incentivize them to complete trades that diversify away the 

risk inherent in the assets they are endowed. Enough trades take place between the individuals in 

each treatment to result in a non-trivial path to equilibrium from beginning to ending holdings. 

The paths followed in each treatment can then be compared against each other for the purposes 

of answering the central questions of this research.  

Consistency with the theoretical framework used in our experiments requires that 

participating individuals seek to maximize the payoff mean and minimize the payoff variance of 



15 
 

their holdings. Normally, we induce mean-variance preferences in subjects by applying a mean-

variance transformation of their final holdings to determine compensation for participating in 

experiments. However, as has been stated earlier, the results discussed in this research are 

limited to simulations that consisted of two ‘robots’ trading against each other. Because 

participants were not, in this case, actual humans, compensation was not necessary and thus 

mean-variance preferences were not induced in the typical manner. Instead, the mean-variance 

preferences of these trading robots are embedded in the algorithms according to which they are 

programmed to make trades. More general exposition of mean-variance preferences is again left 

for the next section, but consider the following example to help illustrate what is meant by the 

phrase. Take individual 2 from the prior example. Mean-variance preferences imply that this 

individual’s utility resulting from their endowment of 160, 120, and 180 in A, B, and cash 

respectively is equal to the mean across the three states of their consequent AD endowment of 

(620, 240, 520) minus a penalty for the variance. The penalty measures the degree of risk 

aversion of individual 2.  

All robots used in simulations were Mean-Variance Optimizing (MVO). These agents 

can be thought of as similar to the zero-intelligence agent developed in Gode and Sunder (1993, 

1994) but extended to multiple markets. They follow a local optimization rule using current 

holdings, asset payoffs, a risk-aversion parameter, and a spread parameter as inputs, continuously 

computing marginal valuations for assets A and B based on mean variance utility functions. The 

robots are described as ‘zero-intelligence’ because they ignore price histories and instead use 

only their own marginal valuation (based on current holdings, asset payoffs, and a risk-aversion 

parameter) combined with their given spread parameter to determine prices at which they should 

post orders in the market. As an example, one of these zero-intelligence agents may calculate a 

marginal valuation for a given asset of $1.00, and, given a spread of $0.02, post a sell order for 

the asset at $1.01 and a buy at $0.99 (spread straddles the valuation), even though the last three 

times market participants have completed a transaction for the asset, the price has always been 

above $1.50. The phrase ‘zero-intelligence’ is used to describe the idea that these MVO agents 

ignore the possibility that their own personal valuation for an asset at any given point in trading 

may be very low (or high) relative to the valuations of other market participants as evidenced in 

recent trades.  
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The risk-aversion parameter was not of particular interest for this research and was kept 

at 0.006 for both robots across all simulations and treatments. The value of 0.006 is only non-

arbitrary to the extent that it produces reasonable (i.e. non-negative, non-huge) valuations for the 

range of holdings the robots could feasibly obtain based on the endowments of assets assigned to 

them across all treatments. The spread parameter is also not of particular interest for this research 

but is necessary in order for the robots to be able to function. Spread parameters were held 

constant at $0.02 for both robots across all simulations and treatments.  

MVO agents can be either market-making or market-taking. All MVO agents used in 

simulations for this research were maker MVOs. This means that at any given moment during a 

simulation, the robots are calculating their marginal valuations for assets A and B and then 

posting buy and sell orders for the assets (for one unit at a time) at prices determined by their 

spread and marginal valuations, hoping that the orders will be completed by another party. As 

soon as one of the orders that a robot has posted is completed, it will recalculate valuations and 

immediately post a new order to replace the one that has been consumed. In the context of the 

simulations run for this research, the robots were always trying to keep four orders on the market 

- one buy and one sell for each of the two assets. MVO agents used in simulations conducted for 

this research are restricted to posting single-unit buy and sell orders in accordance with their 

local-optimization nature. The process of applying a mean-variance utility function to these 

locally-optimizing agents in order to arrive at specific prices at which the agents post buy and 

sell orders is given in the following section. 

Ten simulations were run for each treatment for a total of 30 simulations. Simulations 

were conducted by inviting two MVO agents into a marketplace to trade with each other. . All 

simulations were run using a software called Flex-E-Markets that allows users to set up markets 

and invite others into the market to participate in trading rounds. All markets were organized as 

continuous double auctions. The original intent for this research was to report results from 

trading rounds with human subjects, who would make trades manually via the Flex-E-Markets 

user interface (UI). See Figure 2 for an example screenshot of the Flex-E-Markets UI.  

 

Figure 2. Flex-E-Markets UI (screenshot taken at the end of a simulation round after the two 

MVO agents had reached equilibrium) 
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Unfortunately, experimental sessions with human subjects were not possible for reasons already 

explained. Consequently, all results discussed in this research come from simulations that were 

run consisting of two MVO robots that traded via the Flex-E-Markets application program 

interface (API).  

An important feature of the experimental design of this research was addressing the effect 

that which individual (the Type 1 individual or Type 2 individual) entered the market first in 

each simulation round had on the equilibration path in that round. See the concluding discussion 

of this research for elaboration on the importance of which individual enters the market first. To 

address this effect, simulation rounds alternated between the Type 1 individual starting first and 

the Type 2 individual starting first – odd-numbered rounds were ‘Type 1 first’ rounds and even-

numbered rounds were ‘Type 2 first’. In any given round, the robot that starts first posts all four 

limit orders (one buy and one buy sell for each of the two assets) before the other robot begins 

posting orders.  

 

THEORETICAL FRAMEWORK 

In this research, treatments consist of varying the payoffs of asset B to induce varying 

correlations between asset A and asset B. Let dj be the 2 × 3 matrix describing the payoffs (or 

dividends) of the two risky assets in each of the three states (x, y, and z) for treatment j. Asset (A 

or B) is denoted in the subscript and state in the superscript. 
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 dj is defined generally as: 

𝑑𝑗 = [
𝑑𝑗,𝐴

𝑥 𝑑𝑗,𝐴
𝑦 𝑑𝑗,𝐴

𝑧

𝑑𝑗,𝐵
𝑥 𝑑𝑗,𝐵

𝑦 𝑑𝑗,𝐵
𝑦 ] 

dj has an associated variance-covariance matrix, denoted Dj, which can be written as: 

𝐷𝑗 = [
𝐷𝑗,𝐴𝐴 𝐷𝑗,𝐴𝐵
𝐷𝑗,𝐵𝐴 𝐷𝑗,𝐵𝐵

] 

An element in Dj, say 𝐷𝑗,𝐴𝐵 for example, denotes the payoff covariance between assets A and B 

in treatment j (note that the payoff covariance of an asset with itself, such as 𝐷𝑗,𝐴𝐴, is just the 

payoff variance of the asset). Furthermore, the correlation between A and B, 𝜌𝑗,𝐴𝐵, can be written 

in terms of elements of the variance-covariance matrix as follows: 

𝜌𝑗,𝐴𝐵 =
𝐷𝑗,𝐴𝐵

√𝐷𝑗,𝐴𝐴𝐷𝑗,𝐵𝐵
 

Of course, when the payoffs of the assets change in dj, the resulting values in Dj change and 

ultimately 𝜌𝑗,𝐴𝐵 changes. This is the mechanism used to induce the desired correlations between 

the two assets in each treatment.   

Recall from the prior section that individuals’ endowments of assets change across 

treatments in a particular way that corresponds to the changing payoffs of the assets across 

treatments. To ensure that differences in allocational efficiencies between treatments are actually 

due to the correlation between the assets in each rather than due simply to the nature of 

endowments, each individual must have the same endowed wealth vector across each of the three 

treatments. It is useful at this point to introduce the notion of Arrow-Debreu securities. In the 

three-state economy used for the framework of this research, the set of AD securities is the 

simple spanning set of three securities, each of which pays out one in one state and zero in the 

other two, where the state in which each pays out one is unique to that security. Let the following 

three 1 × 3 matrices, denoted 𝐴𝐷1, 𝐴𝐷2, and 𝐴𝐷3, represent the payoffs of AD securities one, 

two, and three in states x, y and z respectively. 

𝐴𝐷1=[1 0 0] 

𝐴𝐷2=[0 1 0] 

𝐴𝐷3=[0 0 1] 

𝐴𝐷1, 𝐴𝐷2, and 𝐴𝐷3 may be bound by row, forming 𝐴𝐷, which describes the payoffs of 

each of the three AD securities in each of the three states. 
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𝐴𝐷 = [
1 0 0
0 1 0
0 0 1

] 

Let 𝑊𝑖 represent the 1 × 3 matrix describing the wealth that an individual 𝑖 is endowed 

with in each of the three states. Also let 𝐴𝐷𝐸𝑖 represent the 1 × 3 vector describing the 

individual’s endowed number of units of each of the three AD securities. Of course, both 

𝐴𝐷𝐸𝑖 × 𝐴𝐷 = 𝑊𝑖 and thus 𝐴𝐷𝐸𝑖 = 𝑊𝑖 must always be true. 

We would like to keep the endowed wealth constant across treatments and the 

introduction of AD endowments helps to determine endowments of marketable securities A, B, 

and cash in each treatment that achieve this.  

Let 𝐴𝐷𝐸𝑖 denote the 1 × 3 matrix describing the desired endowed wealth (or AD 

endowment) for an individual i in i=1,2 in each of the three states. Also let 𝑑̃𝑗 denote the 3 × 3 

matrix (formed by binding 𝑑𝑗 with (1, 1, 1) by row) describing the payoffs of each asset 

(including cash) in each treatment 𝑗 (described in table form in the experimental design (Tables 

1-3)). Lastly, let 𝐴𝐸𝑖𝑗 denote the 1 × 3 matrix describing the endowments of marketable assets 

(A, B, and cash) for individual 𝑖 in treatment 𝑗. The 𝐴𝐸𝑖𝑗 required to achieve the desired Arrow-

Debreu endowments can be solved for as follows: 

𝐴𝐸𝑖𝑗 × 𝑑̃𝑗 = 𝐴𝐷𝐸𝑖 

𝐴𝐸𝑖𝑗 = 𝐴𝐷𝐸𝑖 × 𝑑̃𝑗
−1 

The asset endowments described in Tables 4-6 provided in the experimental design section were 

arrived at using the method explained here combined with the desired Arrow-Debreu 

endowments listed in the following Table 7 and the previously determined asset payoffs in each 

of the three treatments. The last row of the table describes the market portfolio of Arrow-Debreu 

securities, which is simply the per capita endowed wealth. 

Table 7. Arrow-Debreu endowments (constant across all 3 treatments) 

Type State X State Y State Z  
I 460 360 560 
II 620 240 520 

Market 540 300 540 
 

This research follows the lead of the majority of the vast experimental asset pricing 

literature in utilizing the Capital Asset Pricing Model (CAPM) as the guiding model to predict 
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and shape participant payoff incentives. In accordance with CAPM, agents that traded during the 

simulation rounds exhibited mean-variance preferences. The theoretical framework used in this 

research follows that of Asparouhova et al. (2019) and Asparouhova et al. (2020). 

Let 𝑒𝑖,𝑗
0  be individual i’s cash endowment and 𝑒𝑖,𝑗 = (𝑒𝑖,𝑗

𝐴 , 𝑒𝑖,𝑗
𝐵 ) represent individual i’s 

endowment of risky assets A and B (respectively) in treatment 𝑗. Note that 𝐴𝐸𝑖𝑗 defined above is 

equivalent to (𝑒𝑖,𝑗
𝐴 , 𝑒𝑖,𝑗

𝐵 , 𝑒𝑖,𝑗
0 ) Also let 𝑚𝑖,𝑗  denote individual i’s ending cash holdings and 𝑥𝑖,𝑗  =

 (𝑥𝑖,𝑗
𝐴 , 𝑥𝑖,𝑗

𝐵 ) represent individual i’s final holdings of the risky asset assets A and B (respectively) 

in treatment 𝑗. Recall that 𝑑𝑗 is the 2 × 3 matrix describing the payoffs (or dividends) of the two 

risky assets in each of the three states in treatment 𝑗 and 𝐷𝑗  its associated 2 × 2 variance-

covariance matrix. Also let 𝑑̅ be the vector of expected payoffs for assets A and B (the subscript 

indexing treatment is left off of 𝑑̅ because expected payoffs are always 1 for assets A and B 

across all treatments). 

Subject i’s final wealth in treatment 𝑗 can be written 𝑚𝑖,𝑗 + 𝑑𝑗
𝑇𝑥𝑖,𝑗 which represents the 

sum of their ending cash holding plus dividends received from their ending holdings of risky 

assets A and B. Application of a mean-variance utility function to final wealth can be written as  

 𝑈𝑖,𝑗(𝑚𝑖,𝑗, 𝑥𝑖,𝑗) = 𝑚𝑖,𝑗 + 𝑑̅𝑇𝑥𝑖,𝑗 − 𝛾𝑖
2

𝑥𝑖,𝑗
𝑇 𝐷𝑗𝑥𝑖,𝑗. (1) 

Note that 𝛾i denotes individual i’s risk aversion (which is constant across all treatments). 

 

Market Equilibrium 

Given asset prices 𝑝 = (𝑝𝐴, 𝑝𝐵) for risky assets A and B, respectively, maximizing (1) 

subject to the budget constraint 𝑚𝑖,𝑗 ≤ 𝑒𝑖,𝑗
0 + 𝑝𝑇(𝑒𝑖,𝑗 − 𝑥𝑖,𝑗) yields a demand function for 

individual i in treatment 𝑗 that can be written as  

 𝑥𝑖,𝑗 = 1
γ𝑖

𝐷𝑗
−1(𝑑̅ − 𝑝). (2) 

Assuming that the market clears implies that the sum of final holdings among all market 

participants must be equal to the sum of all initial endowments among all individuals and 

subsequently leads to the following equilibrium prices in treatment 𝑗: 

 𝑝𝑗
∗ = 𝑑̅ − 1

∑ 1
𝛾𝑖

𝐼
𝑖=1

𝐷𝑗 ∑ 𝑒𝑖,𝑗
𝐼
𝑖=1 = 𝑑̅ − Γ𝐷𝑗𝑒̅𝑗. (3) 
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Where Γ = 1
∑ 1

𝛾𝑖
𝐼
𝑖=1

 represents the harmonic mean risk aversion and 𝑒̅𝑗 = ∑ 𝑒𝑖,𝑗
𝐼
𝑖=1  represents the 

per capita endowment of assets which we also call the market portfolio in treatment 𝑗. 

We would also like to show that equilibrium wealth is equal across all treatments. We 

assume that individuals reach the market portfolio 𝑒̅𝑗. To establish equilibrium holdings of cash, 

we also assume that every transaction that individuals participate in to change their holdings of 

risky assets from their initial endowments of 𝑒𝑖,𝑗 to the market portfolio 𝑒̅𝑗 occurs at equilibrium 

prices 𝑝𝑗
∗. With this, an individual’s change in cash Δ𝑒𝑖,𝑗

0  can be written as: 

Δ𝑒𝑖,𝑗
0 = (𝑝𝑗

∗)
𝑇

× (𝑒𝑖,𝑗 − 𝑒̅𝑗) 

Their ending cash 𝑒𝑖,𝑗
𝑓  is their endowment of cash 𝑒𝑖,𝑗

0  plus their change in cash Δ𝑒𝑖,𝑗
0 : 

𝑒𝑖,𝑗
𝑓 = 𝑒𝑖,𝑗

0 + Δ𝑒𝑖,𝑗
0  

Ending cash 𝑒𝑖,𝑗
𝑓  may then be concatenated with the transpose of the market portfolio 𝑒̅𝑗 to form 

vectors describing each individuals’ holdings of A, B, and cash at the end of a round, denoted 

ℎ𝑖,𝑗. Finally, the vector describing an individual’s equilibrium wealth in each of the three states, 

denoted 𝑤𝑖, at the end of a round may be written as the simple matrix multiplication of their 

ending holdings with the treatment’s associated matrix of asset (A, B, and cash) payoffs: 

𝑤𝑖 = ℎ𝑖,𝑗 × 𝑑̃𝑗 

𝑤∗ is used to denote the set of 𝑤𝑖 for 𝑖 = {1,2} that occurs in equilibrium. Note that 𝑤∗ 

characterizes an Arrow-Debreu equilibrium, and also that 𝑤∗ does not change across treatments 

(because Arrow-Debreu endowments do not change across treatments). See Proposition 19.D.1 in 

Mas-Colell (1995) for explanation of Radner equilibriums and their corresponding Arrow-

Debreu equilibriums (and vice versa). Across all treatments, 𝑑̅, ∑ 1
𝛾𝑖

𝐼
𝑖=1 , 𝑤1, and 𝑤2 are given by: 

𝑑̅ = [1
1], ∑ 1

𝛾𝑖

𝐼
𝑖=1 = 𝐼

0.006
, 𝑤1 = [568.8 328.8 568.8], 𝑤2 = [511.2 271.2 511.2]. 

In the negative correlation treatment, 𝐷𝑛𝑒𝑔 and ∑ 𝑒𝑖,𝑛𝑒𝑔
𝐼
𝑖=1  are as follows: 

𝐷𝑛𝑒𝑔 = [
2
3

− 1
6

− 1
6

1
6

], ∑ 𝑒𝑖,𝑛𝑒𝑔
𝐼
𝑖=1 = 𝐼 ×  [160

160]. 

This results in predicted equilibrium prices in the negative treatment of $0.52 for asset A and 

$1.00 for asset B. Consequently, ℎ1,𝑛𝑒𝑔 and ℎ2,𝑛𝑒𝑔 are as follows: 
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ℎ1,𝑛𝑒𝑔 = [160 160 168.8], ℎ2,𝑛𝑒𝑔 = [160 160 111.2]. 

In the zero correlation treatment, 𝐷𝑧𝑒𝑟𝑜 and ∑ 𝑒𝑖,𝑧𝑒𝑟𝑜
𝐼
𝑖=1  are as follows: 

𝐷𝑧𝑒𝑟𝑜 = [
2
3

0

0 1
2

], ∑ 𝑒𝑖,𝑧𝑒𝑟𝑜
𝐼
𝑖=1 = 𝐼 ×  [120

−80], 

and resulting equilibrium prices are $0.52 for asset A and $1.24 for asset B. Resulting ℎ1,𝑧𝑒𝑟𝑜 and 

ℎ2,𝑧𝑒𝑟𝑜 are: 

ℎ1,𝑧𝑒𝑟𝑜 = [120 −80 448.8], ℎ2,𝑧𝑒𝑟𝑜 = [120 −80 391.2]. 

In the positive correlation treatment, 𝐷𝑝𝑜𝑠 and ∑ 𝑒𝑖,𝑝𝑜𝑠
𝐼
𝑖=1  are as follows: 

𝐷𝑝𝑜𝑠 = [
2
3

1
6

1
6

1
6

], ∑ 𝑒𝑖,𝑝𝑜𝑠
𝐼
𝑖=1 = 𝐼 × [ 80

160], 

and resulting equilibrium prices are $0.52 for asset A and $0.76 for asset B. Consequently, ℎ1,𝑝𝑜𝑠 

and ℎ2,𝑝𝑜𝑠 are as follows: 

ℎ1,𝑝𝑜𝑠 = [80 160 248.8], ℎ2,𝑝𝑜𝑠 = [80 160 191.2]. 

Note that, across all three of the treatments, the following equalities hold: 

𝑤1 = ℎ1,𝑗 × 𝑑̃𝑗, 𝑤2 = ℎ2,𝑗 × 𝑑̃𝑗. 

 

Mean-Variance Utility Optimizing Robots 

For each of the two assets in 𝑠 = {𝐴, 𝐵}, an MVO agent will calculate the reservation 

price for asset s as 𝜌𝑠𝑖
𝑡 = 𝜕𝑢𝑖(𝑚𝑖

𝑡,𝑥𝑖
𝑡)/𝜕𝑥𝑖𝑠

𝑡

𝜕𝑢𝑖(𝑚𝑖
𝑡,𝑥𝑖

𝑡)/𝜕𝑚𝑖
𝑡. Note that this is also the marginal rate of substitution 

between asset s and cash for individual i2.  

The MVO agents use their marginal valuation combined with their inputted spread 

parameter to determine values at which to post orders and can post buy and sell orders based on 

these values as follows: 

𝑏𝑖𝑠,𝑏𝑢𝑦
𝑡 = 𝜌𝑖𝑠

𝑡 − 𝛿𝑖𝑠
𝑡  and 𝑏𝑖𝑠,𝑠𝑒𝑙𝑙

𝑡 = 𝜌𝑖𝑠
𝑡 + 𝛿𝑖𝑠

𝑡 . 

After applying mean-variance utility to calculate 𝜌𝑖𝑠
𝑡 , this becomes: 

𝑏𝑖𝑠,𝑏𝑢𝑦
𝑡 = 𝑑𝑠̅̅ ̅ − 𝛾𝑖(𝐷𝑠𝑠𝑥𝑖𝑠 + 𝐷𝑠𝑠′𝑥𝑖𝑠′) − 𝛿𝑖𝑠

𝑡  and 𝑏𝑖𝑠,𝑠𝑒𝑙𝑙
𝑡 = 𝑑𝑠̅̅ ̅ − 𝛾𝑖(𝐷𝑠𝑠𝑥𝑖𝑠 + 𝐷𝑠𝑠′𝑥𝑖𝑠′) + 𝛿𝑖𝑠

𝑡  

 
2 For this research 𝜕𝑢𝑖(𝑚𝑖

𝑡,𝑥𝑖
𝑡)

𝜕𝑚𝑖
𝑡 = 1 always holds making 𝜌𝑠𝑖

𝑡  the marginal value of asset s at time t 



23 
 

The central goal of this research is to vary the correlation between assets in a market and 

examine how equilibration paths and outcomes change as a result. The main hypothesis is that 

markets consisting of securities that correlate negatively will exhibit the highest allocational 

efficiency. The first measure used to compare the efficiency of markets across treatments is the 

total number of trades that markets in each treatment took to reach equilibrium. The implication 

of this basic metric is that a market that requires fewer trades to reach equilibrium, i.e. reaches 

equilibrium more quickly, is likely a more efficient market than one that requires more trades to 

reach equilibrium. 

 

RESULTS 

See Table 8 for a summary of the number of trades each simulation round took to reach 

equilibrium and means for each treatment.  

 

Table 8. Number of trades to equilibrium  

  treatment 
  negative zero positive 

round 

1 117 88 147 
2 102 88 147 
3 111 88 145 
4 102 88 145 
5 111 89 147 
6 102 88 147 
7 111 89 147 
8 102 89 147 
9 117 89 145 
10 107 89 147 

means 108.2 88.5 146.4 
 

This basic metric does not fully support the initial hypothesis of this research (that markets 

consisting of negatively correlated assets are more efficient). While these results partially 

support the hypothesis because the positive treatments, on average, take the largest number of 

trades to reach equilibrium, they are also somewhat contradictory in that the zero treatment takes 

fewer trades on average than the negative treatment.  
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However, this first metric ignores an important difference across the treatments. Due to 

the varying asset endowments required across treatments to keep Arrow-Debreu endowments 

constant, looking at only the total number of trades in each treatment may not accurately portray 

the efficiency of the markets in question. This is because when the endowments of assets vary, 

the beginning and ending (equilibrium) marginal valuations (MVs) of the assets also change. For 

example, in the negative treatment, MVs for the Type 1 individual begin at $0.80 and $0.90 for 

assets A and B respectively and $0.24 and $1.10 for the Type 2 individual. In the equilibrium of 

this treatment, both individuals have MVs of $0.52 and $1.00 for A and B. Consequently, the 

MVs in this treatment in asset A must go from $0.80 to $0.52 for Type 1 and $0.24 to $0.52 for 

Type 2, meaning each individuals’ MVs must change by $0.28. In asset B, each individuals’ 

MVs must change by $0.10. This change in MVs required in each treatment can be thought of as 

the ‘MV distance travelled.’ In the zero correlation treatment, the MV distance travelled in asset 

A is the same, but for asset B it is substantially smaller at only $0.06. A more revealing way to 

look at the trade numbers in each treatment is to first break the trade numbers down by asset and 

then also to scale these numbers by the MV distance travelled in each asset for each treatment. 

See Table 9 for a full report of these numbers.  

Table 9. Trade numbers to equilibrium (by asset) 

  treatment 
  negative zero positive 
  asset A asset B asset A asset B asset A asset B 

round 

1 57 60 69 19 78 69 
2 58 44 69 19 78 69 
3 57 54 69 19 77 68 
4 58 44 69 19 77 68 
5 58 53 69 20 78 69 
6 58 44 69 19 78 69 
7 57 54 69 20 78 69 
8 58 44 69 20 78 69 
9 58 59 69 20 77 68 

10 57 50 69 20 78 69 
means 57.6 50.6 69 19.5 77.7 68.7 

MV distance (in 
cents) 28 10 28 6 28 4 

mean # trades per 
cent in MV distance 2.057 5.060 2.464 3.250 2.775 17.175 
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Accounting for MV distances in this way provides a clearer look at the efficiency of the path 

followed for each asset in each treatment. For example, the MV distance travelled in asset A is 

the same across all treatments at $0.28, but the average number of trades to cover this distance in 

the negative treatment is only 57.6, while in the zero treatment it is 69 and in the positive 77.7. 

The last row of Table 9 reports the average number of trades to travel one cent in MV distance 

for each asset in each treatment. A lower number of trades required to travel one cent in MV 

distance implies a more efficient equilibration path. This metric almost fully supports the 

hypothesis, the only disparity being that average number of trades for asset B in the zero 

treatment (3.250) is smaller than that of the negative treatment (5.060).  

 One last way to help compare the relative efficiencies of the equilibration paths followed 

across treatments is to look at how holdings of the risky assets change through the equilibration 

process for both individuals across treatments. At first, one might think that changes in holdings 

over the course of a given round would be straight forward to predict. For example, in the 

negative treatment, for risky asset A, individual 1 is endowed with 100 units and individual 2 is 

endowed with 220 units. In equilibrium, they are predicted to split the market supply evenly, 

both holding 160 units of the asset. It would seem logical, then, that individual 1 would buy 

approximately 60 units from individual 2 (approximate due to the fact that most rounds fell some 

amount short of predicted equilibrium, for reasons to be explained in the next section), and then 

the individuals would be done trading in asset A for the round. This is roughly what happened 

for asset A in all three treatments, and it also happened for asset B in the zero treatment. It is not, 

however, what happened for asset B in the negative and positive treatments. In the negative 

treatments, individual 1 is endowed with 200 units of asset B, individual 2 is endowed with 120 

units, and they are both predicted to hold 160 units in equilibrium. One would expect the 

individuals’ holdings of asset B to move towards equilibrium in a linear manner, with each round 

consisting only of individual 1 selling units of B to individual 2 until they reach equilibrium. 

Instead, each round starts as expected, with individual 1 selling to 2, but in every round this 

continues past the predicted equilibrium point in which each individual holds 160 units. In every 

round, the individuals eventually worked to undo the overshooting of equilibrium that had 

occurred by switching the direction of transactions, with individual 1 buying units back from 

individual 2. In round 1, the round in which this overshooting of equilibrium happened most 
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severely, individual 1 got down to only 146 units of asset B before starting to buy units back, 

reaching an ending holding of 152 units. See Figure 3 for a graph of each individual’s holdings 

of asset B in all ten of the negative treatment rounds. Note that the trade numbers against which 

holdings are plotted include transactions in both asset A and asset B. This is why the slope at 

some points in each individual’s plotted holdings is zero; at these points the trades occurring 

between the two individuals are in the other asset (asset A in this case), meaning that for these 

trades holdings of B are not changing.  

 

Figure 3. Holdings of asset B in the negative treatment (with ‘trade number’ on x-axis including 

trades in A and B). 

 
A similar pattern occurs in the positive treatment for asset B, but the effect is even more 

pronounced. In this treatment, individuals 1 and 2 are endowed with 200 and 120 units of asset 

B, respectively. In equilibrium, they both hold 160 units. The most direct path to equilibrium in 

asset B would consist of individual 1 selling 40 units of B to individual 2. This is not what 

happens in the ten simulation rounds. Instead, every round starts with individual 1 buying more 

B from individual 2, until individual 1 holds 218 units of B. At this point, the movement away 

from equilibrium stops, and individual 1 starts selling units of B back to individual 2, until they 

reach equilibrium, with individual 1 holding either 167 or 168 units of B.  
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Figure 4. Holdings of asset B in the positive treatment (with ‘trade number’ on x-axis including 

trades in A and B). 

 
The fact that the two market participants would begin trading away from equilibrium 

right from the beginning of a round seems significant. Individual 1 starts with substantially more 

B than individual 2 but still has a higher marginal valuation for the asset (as evidenced by their 

willingness to buy units from individual 2). This must be a result of the individuals’ relative 

holdings and valuations of the other assets. Any trading that occurs in a round that is in a 

direction away from equilibrium is worthy of mention in the context of this research for its 

seemingly obvious inefficiency. That being said, it is not fully understood why this trading away 

from equilibrium occurs in some treatments and not in others and whether or not the reason has 

to do with the varying correlation between assets A and B among the treatments. See Appendix 

B for graphs of holdings of A in all three treatments and B in the zero treatment. In these 

assets/treatments, trades that move holdings away from equilibrium do not occur, meaning that 

holdings follow the (expected) approximately linear path from endowments to equilibriums. 

Another line along which allocational efficiency can be measured is proximity to 

theoretical equilibrium. In each of the three treatments, the theoretical framework described in an 

earlier section gives predicted equilibrium holdings that both individuals are trying to reach. Due 
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to the nature of the experimental design, however, individuals are usually not able to reach 

exactly these predicted equilibrium holdings. More specifically, this is a result of the fact that the 

smallest denomination in which orders can be posted in the Flex-E-Markets software is one cent. 

This means that the Type 1 and Type 2 individuals are forced to stop trading once their MVs are 

equal (plus a spread) for both assets. The fact that traders can only trade until their MVs are 

within one cent (half their spread of $0.02) of each other’s rather than until they are exactly equal 

means that they usually fall some number of transactions short of the predicted equilibrium. For 

example, predicted ending holdings in the negative treatment are 𝑒̅𝑛𝑒𝑔 = [160
160] for assets A and 

B respectively for both individuals. However, many of the negative treatment rounds end with 

holdings such as [157
152] for individual 1 and [163

168]  for individual 2. What is interesting and 

potentially meaningful is that there seems to be substantial difference in how close, on average, 

individuals get to predicted equilibrium holdings across each treatment. Markets that are able to 

get closer to their predicted equilibrium conditions have necessarily reached a more efficient 

outcome than markets that do not get as close. Think of efficiency here as the maximization of 

collective utility between the two individuals in the market. The predicted equilibrium is always 

the most efficient outcome possible, and the trading agents are programmed such that efficiency 

is strictly monotonically increasing with respect to trades as a result of the way efficiency is 

defined here and the fact that the agents will never complete a trade that is not strictly utility-

improving for both individuals. See Table 10 below for a summary of the average distance from 

predicted equilibrium holdings across both individuals in each round as well as means across the 

ten rounds for each treatment.  

Table 10. Proximity to equilibrium (in assets) 

  treatment 
  negative zero positive 

round 

1 5.5 1 4.5 
2 3 1 4.5 
3 5.5 1 5.5 
4 3 1 5.5 
5 4.5 0.5 4.5 
6 3 1 4.5 
7 5.5 0.5 4.5 
8 3 0.5 4.5 
9 4.5 0.5 5.5 
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10 5.5 0.5 4.5 
means 4.3 0.75 4.8 

 

With this metric, too, the zero treatment seems to argue against the initial hypothesis of this 

research. While the result that the mean of the positive treatment (4.8) is greater than the mean of 

the negative treatment (4.3) is mildly supportive of our hypothesis, it is interesting and not 

immediately apparent why the mean for the zero treatment is not only smaller than that of the 

negative treatment at 0.75 but substantially so.  

The last formal measure of efficiency this research will discuss is another form of 

proximity to equilibrium, this time in terms of mean-variance utility rather than holdings. The 

logic, however, is the same in that markets that get closer to their predicted equilibriums are 

more allocationally efficient than those that do not get as close. Predicted equilibrium utilities are 

calculated based on the predicted equilibrium holdings of the risky assets A and B described in 

the last metric. Predicted equilibrium holdings of cash are calculated by adding the net change in 

cash that would result if each transaction that an individual participated in to move their 

endowed holdings of the risky assets towards their desired equilibrium holdings occurred at 

equilibrium prices to their endowed cash holdings. These predicted equilibrium holdings are then 

translated into utility and compared against the individuals’ actual ending utility based on 

whatever their actual ending holdings were at the end of a round. For each of the 30 rounds, the 

average distance from predicted equilibrium utility (in absolute value) across the two individuals 

is given. Note, however, that only one individual’s (absolute value) distance from their predicted 

equilibrium actually needs to be considered to form this table. This is due to the zero-sum nature 

of the relationship between one individual’s over- or underperformance and that of the other 

individual. Because the economy is closed and the fundamental preferences of the individuals are 

the same in all rounds (both individuals have the same utility function, risk aversion, etc.), any 

amount of overperformance of one individual must necessarily come at the expense of an 

underperformance of the exact same magnitude on behalf of the other individual (i.e. individual 

1 overperforming by 5 utils necessitates that individual 2 underperforms by 5 utils). Means 

across the ten rounds of each treatment are given in the last row of the Table 11.   

Table 11. Proximity to equilibrium in utilities (averaged across both individuals) 

  negative zero positive 
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round 

1 5.76 0.36 2.6 
2 5.04 5.03 2.63 
3 6.74 3.16 2.44 
4 7.8 2.51 6.77 
5 5.25 0.41 4.68 
6 4.79 2.79 4.93 
7 5.6 0.63 2.5 
8 6.72 1.07 2.49 
9 3.63 3.54 2.48 
10 0.2 4.48 1.33 

 means 5.153 2.398 3.285 
 

As evident from Table 11, proximity to equilibrium measured in terms of utilities does 

not support the initial hypothesis of this research. Individuals participating in markets consisting 

of negatively correlated assets are furthest on average from their predicted equilibrium with an 

average distance of 5.153. Positive rounds get closer, averaging only 3.285 utils away from 

predictions, while the zero rounds get closest, with an average distance of only 2.398. Conjecture 

about what may be causing this result is provided in the concluding discussion.   

One last method to try and better understand some of the differences between the 

equilibration paths followed in the different treatments is to look at the utility improvements of 

each individual throughout a given round of trading. Ideally, a graph from the round that was 

‘most efficient’ and a graph from the round that was ‘least efficient’ would be included for each 

treatment. This way, the graphs from the most efficient rounds and least efficient rounds could 

be compared against each other both within treatments and across treatments, in hopes of finding 

clues about what makes for an efficient round and what makes for an inefficient round and also 

what is unique to each treatment and may make it more or less conducive to efficient rounds. The 

minimum number of trades required to reach equilibrium in a negative treatment was 102, and 

round 2 is an example of one of the rounds that required this number of trades. Figure 5, shown 

below, tracks each individual’s utility improvement over the course of trading. The purple line 

indicates both individuals’ predicted utility improvement. From this, it can be seen that 

individual 1 overperforms in this round and individual 2 underperforms. Notice also that 

individual 1’s line includes more blue points than red, this is also in line with expectations, as 

assuming the ‘taker role’ in the majority of transactions is likely to cause an individual to 

outperform in that round. Notice also the almost flat slope surrounding the red points in both 
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individuals’ utility improvement lines, which again shows how minorly beneficial it is for an 

individual to complete a transaction in which they have assumed the ‘maker role’. Of course, this 

would not be the case if the trading agents were given larger spread parameters.  

 

Figure 5. Tracking both individual’s utility improvements over the course of trading in the 

second round of the negative treatment. 

 
The maximum number of trades required to reach equilibrium in the negative treatment was 117. 

The first round took this number of trades, making it a good example of a less efficient negative 

treatment round. Figure 6, provided below, shows utility improvements for this round. 

  

Figure 6. Tracking both individual’s utility improvements over the course of trading in the first 

round of the negative treatment. 
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 Unfortunately, the zero and negative treatments do not indicate much evidence of 

dispersion as far as some rounds within each treatment being more efficient and some being less. 

Because of this, instead of including graphs for two rounds (one efficient and one inefficient) 

from each, we choose the round that seems most ‘average’ to include for each treatment. We 

decide which round is most ‘average’ in each treatment by choosing the round which is closest to 

the average in the ‘absolute value of proximity to equilibrium utility’ metric. Numbers for this 

metric are included in Table 11. For the zero treatment, the round that appears most average by 

this method is round 4. Figure 7 below tracks the utility of both individuals over the course of 

trading in this round. 
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Figure 7. Tracking both individual’s utility improvements over the course of trading in the 

fourth round of the zero treatment. 

 
Lastly, round 2 of the positive treatment appears to be the most average out of the ten rounds. 

Figure 8, below, tracks the utility of both individuals over the course of trading in this round. 

 

Figure 8. Tracking both individual’s utility improvements over the course of trading in the 

second round of the positive treatment. 
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While these graphs help to confirm intuition regarding the impacts of assuming the ‘maker’ 

versus ‘taker’ role in transactions, it is still hard to discern from them what role each treatment 

plays in causing more or less efficient trading rounds.  

 

CONCLUDING DISCUSSION 

When thinking about the results of this research as a whole it is useful to make a 

distinction between the efficiency of a market’s equilibration path and that of its actual 

equilibrium. Most of the measures included in this research that examine the efficiency of the 

equilibration path are supportive of the main hypothesis of this research – that markets consisting 

of negatively correlated assets are more allocationally efficient. The other measures included, 

however, those focusing on the efficiency of the equilibrium reached by a market (mostly related 

to the proximity of a given market’s equilibrium to its predicted equilibrium), are not supportive 

of the hypothesis and are instead, to some degree, directly contradictory. We believe this may be 

a result of the fact that the variance of asset B varies across the three treatments. In the positive 

and negative treatment, the variance of B is only 1
6
, while is the zero treatment it is 1

2
. Due to the 

mean-variance nature of the agents used in simulations, transacting in an asset with a larger 

variance means larger jumps in utilities and marginal valuations from one transaction to the next. 
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As a result, two individuals trading in an asset with a large variance would theoretically get 

much closer to their predicted equilibrium holdings before getting stuck by the fact that their 

valuations are within one cent of each other. The same two individuals trading in an asset with a 

small variance, however, may reach the point of their valuations being within one cent of each 

other’s when they still have a much larger number of trades left before they reach predicted 

equilibrium holdings. This is because the smaller variance of the asset means that each individual 

is effectively less hurt (via decreased utility) from each unit away that they are from predicted 

equilibrium, and this diminished consequence is reflected in the increased speed with which their 

valuations converge on the path towards equilibrium holdings. To address these ideas, we would 

like to complete more simulations in the future using different asset structures so that while the 

correlation between assets in each treatment are the same as those in this research, the variances 

of the assets are held constant across treatments.  

Another result of this research that is not fully understood is why which individual that 

underperforms and which that outperforms their expected equilibrium utility does not switch 

according to which individual starts first in a given round in the zero and positive correlation 

treatments. See Appendix A for a table showing which individual outperforms expected utility 

and which underperforms in each round and by how much. Asparouhova et al. (2020) explains 

how in a setting such as that of this research, where the market consists only of two makers both 

using small spreads, assuming the role of maker in any given transaction reduces the increase in 

utility that an individual experiences from the transaction. Note from the description of the 

experimental design of this research that in each round of trading, the individual that entered the 

market first was always deliberate. It would seem logical that this individual, due to their time 

(dis)advantage, would be likely to more often assume the role of maker in transactions for that 

round, simply as a result of their entering the market first. It would also be expected, then, that 

the individual who enters the market first would be the one to underperform their predicted 

equilibrium utility in that round. This is not what we observe. Instead, the negative treatment is 

the only of the three that comes close to following this pattern (the only round in which it does 

not is round 10, where individual 2 enters the market first and also outperforms their predicted 

equilibrium utility). In the zero treatment, individual 1 is the ‘winner’ at the expense of 

individual 2 in every round except 9, even though which robot starts first alternates exactly the 

same (individual 1 in odd rounds and 2 in even). The positive treatment violates the pattern even 
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more completely, with individual 1 gaining the greater utility improvement in all 10 rounds, 

again in spite of the fact that the starting robot is alternating through the 10 rounds.  

 The graphs included at the end of the Results section are helpful in thinking further about 

what might be going on. It is easy to understand that the key to being the ‘winner’ of any given 

round is assuming the role of taker in the majority of transactions. It is also easy to understand 

why starting first would make an individual less likely to be able to do this. However, starting 

first in our experimental setup does not necessitate occupying the ‘maker role’ for the entirety of 

the round. This is because there is some randomness in the order in which robots are able to get 

orders onto the market introduced by the issue of speed. While a type 1 individual may start first 

in a round, at some point in the round the type 2 individual may, for a variety of reasons 

primarily related to technical aspects of the functioning of the robots and their interaction with 

Flex-E-Markets such as server speed, etc., be faster to get a new set of orders on the market, and 

this will result in the type 2 individual assuming the role of maker for some number of 

transactions thereafter. This has interesting implications that do not necessarily agree with the 

seemingly intuitive results from work such as Baron, Brogaard, and Kirilenko (2012) that 

increased speed is beneficial. From this it can be understood why the robot that starts first will 

not, as a result of this randomness, be the one to lose out in the round 100% of the time. What is 

not understood, however, is why this randomness does not seem to affect the three treatments 

similarly. In the negative rounds, which robot starts first is almost a perfect predictor of which 

will lose out in the round. While in the zero and positive treatments, not only does which robot 

start first seem to have no power as a predictor of which will lose out, there is clearly something 

about individual 1 that makes it more well-equipped to outperform. What quality inherent to 

individual 1 that is missing in individual 2 and ultimately giving individual 1 the upper hand in 

these rounds is not known or understood. What can be concluded from this research,  however, is 

that speed plays a large role in determining one’s profits relative to the individuals they compete 

against, the sign of the relationship between speed and profits is not always as expected, and the 

security design of the markets in which individuals participate seem to impact how important a 

role speed plays in determining relative profits.  

 It is clear that we do not yet understand all of the results we have seen. While we had 

always intended to run some algorithmic trading agent simulations as a proof of concept, the 

pandemic has limited us entirely to such simulations using MVO trading robots, and made it 
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impossible to conduct experimental sessions with human subjects. There have been silver linings 

to this forced change of plans, namely that we have come to much better understand the trading 

dynamics in such a robot vs. robot trading setup, and have observed interesting results related to 

speed, maker vs. taker roles, etc., such as those discussed earlier. This change has also, however, 

made it more difficult to fully answer the original questions of this research. The introduction of 

algorithmic agents has, at times, made it difficult to disentangle the results caused by correlation 

treatments from those that are simply a byproduct of the nature of the robots used. A fuller 

understanding of the questions posed by this research will likely have to wait until we are able to 

conduct experiments with human subjects.  

 

APPENDIX A. UTILITY PROXIMITIES TO EQUILIBRIUM (BY INDIVIDUAL) 

 Table 12 shows each individual’s proximity to their predicted equilibrium utility in each 

round of each treatment. Note that the numbers reported in the table are a result of subtracting 

the actual ending utility of an individual from the predicted ending utility of the individual, 

meaning that a positive number is indicative of an individual falling short of their predicted 

utility in that round while a negative number is indicative of outperforming. 

 

Table 12. Proximity to predicted equilibrium utility by individual 

  treatment 
  negative zero positive 
  individual 1 individual 2 individual 1 individual 2 individual 1 individual 2 

round 

1 5.76 -5.76 -0.36 0.36 -2.6 2.6 
2 -5.04 5.04 -5.03 5.03 -2.63 2.63 
3 6.74 -6.74 -3.16 3.16 -2.44 2.44 
4 -7.8 7.8 -2.51 2.51 -6.77 6.77 
5 5.25 -5.25 -0.41 0.41 -4.68 4.68 
6 -4.79 4.79 -2.79 2.79 -4.93 4.93 
7 5.6 -5.6 -0.63 0.63 -2.5 2.5 
8 -6.72 6.72 -1.07 1.07 -2.49 2.49 
9 3.63 -3.63 3.54 -3.54 -2.48 2.48 

10 0.2 -0.2 -4.48 4.48 -1.33 1.33 
 

Note the oddity in signs of values in the table. Intuition would suggest that for every odd-

numbered round, individual 1 would have a positive value (indicating underperformance) 



38 
 

resulting from their starting first in the round and individual 2 a negative value (indicating 

overperformance) as a result of their starting second in the round. The opposite would be 

expected for even-numbered rounds, using similar logic. The only treatment in which this pattern 

holds is the negative treatment, where it holds in all rounds except round 10. In the zero 

treatment, which individual starts first seems to have very little impact on who overperforms and 

who underperforms. Instead, individual 1 outperforms in every round except round 9. The 

positive treatment upholds the pattern even less, with individual 1 outperforming in all ten 

rounds.  

 

APPENDIX B. HOLDINGS OF ASSETS A IN ALL THREE TREATMENTS AND B IN THE 

ZERO TREATMENT 

This research consists of three treatments for a two-asset market, meaning six total paths of 

equilibration to be examined (one for each asset in each treatment). The evolution of holdings 

along two of these paths (asset B in the negative and positive treatments) are not as expected. 

The paths followed in these assets/treatments and their oddities have been described in the results 

section. The holdings along the equilibration paths in the four remaining assets/treatments, in 

which trades do proceed as expected, are given here for reference.  

 

Figure 9. Holdings of asset A in the negative treatment (with ‘trade number’ on x-axis including 

trades in A and B). 
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Figure 10. Holdings of asset A in the zero treatment (with ‘trade number’ on x-axis including 

trades in A and B). 

 
Figure 11. Holdings of asset A in the positive treatment (with ‘trade number’ on x-axis including 

trades in A and B). 
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Figure 12. Holdings of asset B in the zero treatment (with ‘trade number’ on x-axis including 

trades in A and B). 
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