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ABSTRACT 

 

The aim of this research is to better determine the optimal realistic number and 

placement of surface electromyographic (sEMG) electrodes to provide more accurate and 

intuitive control of upper-limb prostheses. sEMG is a non-invasive prosthesis control 

technique that can be used in place of intramuscular electromyography (iEMG) that 

requires an invasive procedure. The number of electrodes and their locations are often 

chosen semi-arbitrarily for use with computational control algorithms. Optimizing sEMG 

electrode number and location can provide improved control, perhaps approaching that of 

iEMG electrodes. 

The sEMG data of 5 intact subjects controlling 8 degrees of freedom were gathered 

using 96 electrodes distributed evenly across the forearm. The Root Mean Square Error 

(RMSE) between the computer’s prediction of the subject’s movement and the computer’s 

pre-programmed movement was computed and compared with an increasing number of 

electrodes. Spatial locations of useful sEMG information were analyzed using a data 

visualization technique called a heatmap. 



Firstly, when the electrodes were placed optimally, approximately 50 electrodes 

were required for accurate control of the prosthesis, compared to the ~90 electrodes with 

inverse-optimal placement. Secondly, the data analysis showed that some electrodes out of 

total 96 were chosen more frequently than others, as among the best electrodes. Based on 

current results, approximately 50 best chosen electrodes placed in the respective areas on 

the arm are required to control 8 DOFs. This research will help the researchers to optimize 

sEMG control more effectively and thus provide more accurate control of myoelectric 

upper-limb prostheses.



INTRODUCTION 

According to the National Center for Health Statistics, approximately 50,000 new 

amputations occur each year, twenty-five percent of which are upper limb [1]. Most people 

with upper-limb amputations are hesitant to get a functional prosthesis because of the 

expensive procedures [2]. The amputees who choose to get a functional prosthesis tend to 

abandon it due to several reasons, including lack of comfort, heavy weight leading to 

fatigue, and lack of function. Lack of function is a result of the non-intuitive control due to 

the limited number of degrees of freedom (DOFs). This limits the amputee’s ability to 

perform activities of daily living (ADLs) that require various DOFs [3]. 

Each DOF activates different muscle(s) or groups of muscles that send electrical 

signals to the brain, indicating the person’s desire to perform a certain movement [3]. 

Researchers have been able to extract these signals from the residual nerves or muscles of 

the amputee. This provides intuitive functional control to people with upper-limb 

amputations [4]. For advanced control, this approach has often used intramuscular 

electromyography (iEMG) recorded from surgically implanted electrodes. Although iEMG 

can provide accurate functional control over multiple DOFs, it requires invasive procedures 

that many amputees do not want to undergo [5]. A non-invasive alternative is surface 

electromyography (sEMG) that uses the electrodes placed on the arm surface to control the 

prosthesis. Although sEMG is in widespread clinical use for limited number of electrodes 

and DOFs [6], sEMG based prosthesis have not yet been found to provide intuitive control 

for multiple DOFs [7], [8]. The control of prostheses based on electromyography (EMG) 

depends on factors, including but not limited to the number and placement of the electrodes 

that record the signals. If placed optimally, sEMG electrodes might provide control similar 

to iEMG electrodes [9]. Because sEMG performance depends on electrodes, the ideal 



electrode count and their placement on the forearm are necessary parameters for better 

intuitive control of future functional prostheses [7], [9]. 

Increasing the number of electrodes facilitates more independent features to be 

recorded from the residual muscles in the amputated residual limb that enables intuitive 

amputee control over multiple DOFs [10]. A higher number of electrodes also improves 

the computational accuracy as it provides more combinations of electrodes for data analysis 

[11]. The different combinations, also called subsets, inform different electrode densities, 

that is, the spatial distribution of electrodes in an area [10]. This helps identify areas on the 

arm that provide the most useful movement signals to control various DOFs [12]. A 

definitive generic number and the specific placement for sEMG electrodes for optimal 

amputee control and functional performance remain unclear [5], [8]. 

The limitation of upper-limb prosthesis to control multiple DOFs was addressed by 

finding generalizable electrode count and placement on the amputee. We used an electrode 

sleeve with ninety-six electrodes that covered the entire forearm. The purpose of the sleeve 

was (a) the easy donning and doffing and (b) to restrict the electrodes from moving so that 

each electrode stays in the same position throughout the experiment. The number of 

electrodes used was much higher than the number typically used for sEMG controlled 

prosthesis [10]. With the high-count sleeve, we could thoroughly investigate the role that 

electrode count and placement played on prosthesis control. The number of electrodes 

needed for best control was determined by comparing prosthetic performance with 

increasing number of electrodes provided to the control algorithm. This facilitated direct 

assessment of prosthesis functional control with increasing electrode number. After 

modifying the pre-written computational algorithm, we analyzed the electrode channel 

selection patterns to inform better electrode count and placement for a universal approach 



to sEMG recording. Our results should guide future approaches to provide better 

functionally controlled upper-limb prosthesis, and hence increase acceptance rates for 

functional upper-limb prosthesis amongst the people with amputations. 

BACKGROUND 

12,500 upper-limb amputations are performed every year in the United States. 

This number is expected to double by the year 2050 [1], mainly due to the diabetes 

epidemic [12]. The major causes of upper-limb amputations include, but are not limited 

to accidents, tumors, infections, and congenital conditions [13]. Upper-limb amputations 

not only cause functional disabilities, but also impact the psychology of the individual, 

especially if they are due to a trauma [14], [15]. Most people with non-congenital upper-

limb amputations feel the need to adopt a prosthesis [13]. People have exhibited 

psychological consequences after amputation due to a tragic event; having a prosthetic 

hand gives them some functional restoration that helps them recover psychologically 

[15].  

There are different kinds of prostheses for different kinds of amputations.  Upper-

limb amputations can be (a) transradial, in which the amputation occurs somewhere 

below the elbow and above the wrist, (b) transhumeral, in which the amputation occurs 

somewhere above the forearm to the shoulder, (c) wrist disarticulation, in which the 

amputation occurs at the level of the wrist, (d) shoulder disarticulation, in which the 

amputation occurs at the level of the shoulder, or (e) hand amputation, in which the 

amputation occurs somewhere below the level of the wrist [12]. Transradial, wrist 

disarticulation, and hand amputations leave the extrinsic hand and wrist musculature 

behind that is used to control different DOFs [16], whereas transhumeral and shoulder 

disarticulation amputations do not [17]. Hence, people with amputations above the elbow 



require a more complex functional prosthesis than people with amputations below the 

elbow [12], [16], [17].  

Current functional upper-limb prostheses for beyond cosmetic purposes are either 

body-powered (BP), myoelectric (MYO), or a hybrid combination of the two [18], [19]. 

BP prostheses are unintuitively controlled using other body parts such as the shoulder 

[18].  These prostheses use cables to control the prosthetic hand that allow the user to 

switch between pre-set drips [19]. Most people with upper-limb amputations opt-in for 

BP prostheses because they are less expensive, lighter, easier to use, and more robust 

than MYO prostheses [19], [20]. MYO prostheses have the potential to be more robust 

and can control various DOFs intuitively, because they use biological signals from the 

residual muscles [21]. The biological signals that control the arm are still physiologically 

active and can be exploited from the residual limb of people with amputations below the 

elbow, that is, people with transradial, wrist disarticulation, and hand amputations [16], 

[22]. This helps drive an intuitive prosthesis control similar to the ability of the native 

hand [22]. 

Non-invasive prostheses provide an important advantage because patients 

abandon their prostheses, in large part, due to discomfort, and non-invasive prostheses 

cause less discomfort than invasive prostheses [20], [23]. Despite the current advantages 

of BP prostheses over MYO prostheses, their rejection rates are similar to each other [3], 

[24]. Rejection rate depends on various factors such as function and comfort [20]. In a 

recent study, BP prostheses had 80% rejection rate due to reasons including, but not 

limited to, slow movement and ineffective intuitive control. MYO prostheses had 75% 

rejection rate due to insufficient movements of hand, fingers, and wrist, not allowing 

them to perform various ADLs [25]. In another study, 26% of the participants rejected the 



BP prostheses and 23% rejected the MYO prostheses, due to similar reasons as the 

previous study [3]. 

ADLs require different movements and hence different DOFs. Each DOF 

activates different muscle groups in the residual arm [24]. Current myoelectric prostheses 

in the market may control as little as 2 DOFs, whereas the intact human hand performs up 

to 16 DOFs in daily life [26]. Additionally, for more DOFs, the user must switch 

controlling between different DOFs as needed [24]. Previous studies show that there are 

specific areas on the forearm for different DOFs [27]. The DOFs that the prostheses 

users, especially transradial amputees, desire are wrist flexion, wrist extension, pronation, 

supination, and hand open/close [28]. Because the current prostheses do not allow 

simultaneous control over multiple DOFs, people with amputations do not have intuitive 

control and this makes it difficult for them to perform ADLs. Intuitive control is an 

essential user need for the upper-limb prostheses [29].  

The popular approach to achieve intuitive control is EMG that extracts the 

biological signals from the residual muscles, either invasively via iEMG or non-

invasively via sEMG [8]. iEMG is gathered from surgically implanted electrodes whereas 

sEMG is gathered from the electrodes placed on a sleeve via a one-on-one association of 

surface electrodes with the action potentials of each motor neuron [4], [8]. Although 

iEMG electrodes provide more stable control and have functional advantages over non-

invasive sEMG electrodes [5], most people with amputations do not wish to undergo 

additional surgeries for electrode placement and interfacing because of the psychological 

trauma they have already gone through [15]. Additionally, most commercial upper-limb 

prostheses are not configured to utilize high numbers of EMG recordings. 

Multi-DOF sEMG-based prostheses require machine learning techniques or other 



algorithms that can power simultaneous control over multiple movements, as different 

movements result in different EMG patterns due to activation of different muscle groups 

[10], [26]. As sEMG records local field potentials generated from functional muscles near 

the residual limb, summated electrical activity is sampled from muscles beyond those 

directly beneath the electrode [30]. sEMG collection of muscle activity from non-

associated muscle systems produces unnecessary sources of noise that interfere with 

patient control of the upper limb prosthesis [8]. The interfering signals arise the normal 

biological process of activation of other muscles around the muscle that has electrodes 

placed directly on it [4]. Functional prosthetic control for given DOFs is improved by 

involving only those muscles that activate specific sEMG electrodes. This drives the 

motivation to understand how sEMG electrode locations and numbers produce this 

optimal control without engaging distracting neuromuscular features [8]. 

The sEMG control method usually involves (a) record EMG signals from the 

subject’s intended movement, (b) preprocessing the signal to reduce noise captured 

during the experiment, (c) extracting unique information related to the movement, and (d) 

translating the extracted information into a physical movement that will move the 

prosthesis [31]. Currently, there are problems in recording accurate EMG signals 

pertaining to the user’s intended movement due to the subject’s motion or movement of 

the electrodes placed on the subject’s arm [32]. It has been found that if more electrodes 

are placed on the arm, electrode shift causes less difference in the user’s intended 

movement accuracy [33].  

Ultimately, prosthetic performance depends on various attributes including, but 

not limited to, function and comfort. Amputees tend to reject the prostheses after a short 

time of usage due to lack of function and discomfort [34]. This research addresses the 



function aspect of the prostheses and aims towards improving their intuitive control. This 

is done by looking at the important areas of the arm responsible for multiple DOFs. 

Placing electrodes in these important areas will allow intuitive control of those DOFs. 

Identifying the areas will also lead to a generic number of electrodes required for the 

intuitive control.  

METHODS 

Materials 

Table I: Materials Used for Gathering Data 

Description Use 

Black neoprene sleeve with 96 electrodes Used to gather data from an intact subject 

residual limb engaged with prosthesis. 

Ripple Neuro Grapevine Neural Interface 

Processor (NIP)  

Used to process electromyography signals from 

the arm to display them on the decode interface 

3 grapevine 32-channel Socket Connectors Used to connect electrodes on the sleeve to NIP 

 

A. The Apparatus 

 The wearable sleeve with 96 electrodes embedded in it (Fig. 1) was connected to 

the EMG channel of the NIP using the 3 socket connectors. The NIP was connected to a 

computer running the motor-decode routine that decoded the electrical signals from the 

subject’s arm muscles into EMG signals using a modified Kalman Filter (mKF), a 

computational control algorithm used to decode motor intent of the nerves by matching 

the EMG signals with pre-programmed movements [35]. 



Fig. 1. a) Wearable sleeve with 96 active embedded electrodes, 1 reference electrode, and 

1 ground electrode to record EMG signals from intact subjects. b) A zoomed-in picture of 

the same sleeve showing that each electrode is numbered to facilitate referencing and 

identification. 

 

B. Prosthesis Control Paradigm 

 The 96 electrodes on the wearable sleeve gathered sEMG signals at 1 kHz through 

the 512-channel Grapevine System (Ripple Neuro LLC, Salt Lake City, Utah). These 

signals were then filtered through low pass (375 Hz, second-order Butterworth), high pass 

(12 Hz, sixth-order Butterworth), and 60/120/180 notch filters. A 300-ms mean absolute 

window moving at 30 Hz was then used to calculate the recordings from the 96 electrodes. 

This was used as an input to the motor decode algorithm. EMG features and kinematics 

were used to fit weights of a Kalman Filter, which was used for prosthesis control. The 

Kalman Filter, commonly used for prosthesis control in research, predicted the user’s 

motor intent when given new EMG signals. This drove the prosthesis to the user’s 

intended position.  



 

C. Training and Testing the Decode Algorithm 

 EMG signals were recorded from 5 intact subjects at different times. The subjects 

mimicked 8 pre-programmed DOFs (Table 2). Each DOF was repeated 10 times in order 

to train and better test the algorithm. Two movements associated with each DOF resulted 

in 160 (8 x 2 x 10) total movements per subject. Out of these 160, 80 movements were used 

to train the motor-decode algorithm and the remaining 80 were used to test it. The control 

algorithm used the training data to predict the user’s motor intent and actuate the prosthesis. 

Table II: Description of the Degrees of Freedom (DOF) tested 

DOF # DOF Description 

1 Thumb: Flexion/Extension 

2 Index Finger: Flexion/Extension 

3 Middle Finger: Flexion/Extension 

4 Ring Finger: Flexion/Extension 

5 Pinky: Flexion/Extension 

6 Thumb: Abduction/Adduction 

7 Wrist: Flexion/Extension 

8 Wrist: Pronation/Supination 

 

D. Techniques used for Data Analysis 

a. Heatmap 

 To analyze signals for spatial density of information, a Gram-Schmidt 

orthogonalization algorithm was used. This helped find spatial locations of useful 



sEMG information. This information was analyzed using a data visualization 

technique called a heatmap that uses the intensity of colors to depict the frequency 

of a parameter (Fig. 3). In this case, the parameter was the number of times an 

electrode was ‘chosen.’ Each electrode was ‘chosen’ by the Gram-Schmidt 

orthogonalization algorithm based on the uniqueness of the signals from them. The 

information from the heatmap was used to provide electrodes to the motor-decode 

algorithm in both decreasing (optimal) and increasing (inverse-optimal) orders of 

signal uniqueness.  

b. Root Mean Square Error (RMSE) 

 RMSE was used as a parameter to access the prosthesis control. It was the 

difference between perfect pre-programmed kinematic movement from a 

computer software that the subject was mimicking and the computer’s attempt to 

replicate that kinematics using the EMG signal. To calculate the mean movement 

RMSE, the intended movement RMSE and crosstalk RMSE were calculated first.  

i. Intended Movement RMSE 

Intended movement RMSE is the difference between the pre-programmed 

virtual movement and the computer’s attempt at predicting the user’s 

movement (Fig. 2). It was calculated using MATLAB’s in-built as well as 

user-defined functions.  

ii. Crosstalk RMSE 

Crosstalk RMSE is the unintended movement RMSE and refers to the 

difference between the pre-programmed virtual movement and the 

unintended movement that the computer predicted but the user did not 

instruct (or presumably intend) to do (Fig. 2). It was also calculated using 



MATLAB’s in-built as well as user-defined functions.  

iii. Mean RMSE 

The mean movement RMSE refers to the average of the intended 

movement and crosstalk RMSEs. It was also calculated similarly using 

MATLAB. 

 The mean RMSE between the intended and unintended movements 

described above was calculated with increasing number of activated electrodes 

presented to the control algorithm. The idea behind increasing the electrodes one-

by-one was to see how RMSE, that is, how prosthesis control is affected with more 

electrodes versus fewer electrodes. The mean RMSE was calculated for both the 

optimal as well as the inverse-optimal placement of electrodes (Fig. 4). 

For the optimal placement, the electrode with the most unique signals was 

provided to the motor-decode algorithm first and the electrode with the least 

unique signals was provided at the last. For the inverse-optimal placement, the 

electrode with least unique signals was provided to the algorithm first and the 

electrode with the most unique signals was provided at the last. This was done to 

mimic the worst-case scenario of poor placement of electrodes. Comparing the 

optimal and inverse-optimal placements helped establish if it is useful to have an 

optimal number of electrodes or not. The p-value was calculated from a two-tailed 

and a left-tailed t-test at 0.05 significance level to verify the results.  

 

 

 

 



 

Fig. 2. EMG signal for one DOF (middle finger flexion and extension) illustrating intended 

movement RMSE and crosstalk RMSE. The red signal represents the computer’s pre-

programmed movement, and the blue signal represents the computer’s prediction of the 

subject’s movement. The positive blue signal represents the computer’s prediction of the 

subject’s intended movement and the negative blue signal represents the computer’s 

prediction of the subject’s unintended movement during the study experiment. 

 

 

 

 

 

 

 



RESULTS 

A. Heatmap 

The heatmap had 96 boxes corresponding to the 96 electrodes on the wearable 

sleeve. All the boxes had different color intensities, that is, the electrodes had different 

probabilities of getting ‘chosen.’ ‘Chosen’ refers to the electrodes with the most 

unique EMG signal. The uniqueness depends on the quality of the signal and is 

decided by the Gram-Schmidt orthogonalization algorithm. The more chosen 

electrodes correspond to darker color intensity on the heatmap (Fig. 3). The color 

intensity of the heatmap in Fig. 3 shows that some electrodes were chosen more 

frequently compared with the others, across data from 5 subjects. For instance, the 

boxes on the lower right-hand corner of the heatmap are darker in color than the boxes 

on the upper left-hand corner.  

 

 

 

 

 

 



Fig. 3. Heatmap for activation frequency for 96 electrodes on the muscle sleeve. The x 

and left y axes depict the direction of the placement of electrodes on the sleeve: dorsal to 

ventral and distal to proximal, respectively. The right y-axis shows the color bar from 

lighter to darker color reflecting ascending frequency of electrodes. Each box represents 

one electrode on the 96-electrode wearable sleeve, with color intensity depicting the 

number of times each electrode was chosen across the data from 5 subjects based on signal 

uniqueness calculated by the Gram-Schmidt algorithm. The darker boxes represent 

electrodes with more useful information compared to the lighter boxes. For example, the 

boxes in the lower right-hand corner are darker than the boxes in the upper-left hand 

corner. 

 

 

 



B. Root Mean Square Error: Prosthesis Function 

The mean RMSE, which is the mean of movement and crosstalk RMSE, decreased 

gradually as the number of electrodes presented to the motor-decode algorithm 

increased. The RMSE for optimal placement of electrodes begins at 0.42 at 8 

electrodes, decreases to 0.32 at 18 electrodes, and to 0.172 at 50 electrodes. The RMSE 

value for optimal placement reached a constant magnitude after approximately 50 

electrodes.  

Although, the mean RMSE decreased with increasing number of electrodes for 

both optimal and non-optimal placement, it dropped to a constant magnitude of 0.172 

at approximately 50 chosen electrodes with optimal placement. On the other hand, the 

mean RMSE also dropped to the same value but at approximately 90 chosen electrodes 

for non-optimal placement of electrodes (Fig. 4). The difference between the two 

RMSEs is the highest initially between approximately 8-20 electrodes. The difference 

decreases past that range. 

 

 

 

 



Fig. 4. Comparison of RMSE between mean of intended and unintended movement with 

increasing number of electrodes provided to the control algorithm based on their 

uniqueness (from the heatmap). The mean RMSE decreases for both optimal and inverse-

optimal placement as the number of electrodes increase. It drops down from 0.45 with 1 

electrode to 0.172 at 50 electrodes for optimal placement whereas it reached the same 

value of 0.172 at 90 electrodes for inverse-optimal placement. The difference between the 

two was the highest initially, between 8-20 electrodes and it decreased gradually past that 

range. 

 

C. EMG Signal for a single DOF 

The EMG signal for a single DOF (Fig. 5) shows that the computer’s prediction 

of the subject’s intended movement improves as the number of electrodes increase. 

The computer’s prediction, which is translatable to the movement of the prosthesis, is 



better at 96 electrodes compared to 15 electrodes as seen in Fig. 5.  

 

Fig. 5. Two EMG signals (a & b) for a single DOF (Middle Finger Flexion and Extension) 

with (a) 15 electrodes and (b) 96 electrodes. The red signal represents the computer’s pre-

programmed movement, and the blue signal represents the computer’s prediction of the 

subject’s intended movement. The computer’s prediction of the subject’s intended 

movement improves with more number of electrodes as the blue signal is mimicking the 

red signal more at (b) 96 electrodes vs at (a) 15 electrodes.   

 



D. Statistical Analysis 

A two-tailed t-test gave a p-value of 0.04 < 0.05 implying the difference between 

optimal and inverse-optimal placement of electrodes. A left-tailed t-test at the same 

significance level gave a p-value of 0.02 < 0.05, thus, indicating that the mean RMSE 

with optimal placement is less than the mean RMSE with inverse-optimal placement. 

The mean RMSE ± SEM with optimal electrode placement was 0.153 +/- 0.009. This 

was significantly less than the mean RMSE ± SEM of 0.246 +/- 0.009 with non-optimal 

electrode placement. 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISCUSSION 

Current upper-limb prostheses in the market have a low acceptance rate in good 

part because they do not provide effective intuitive control to the user. Advanced EMG-

based prostheses have the potential to provide intuitive control. The aim of this research 

was to find an optimal number of sEMG electrodes and their placement across the forearm 

for an improved functional control of the surface EMG (sEMG) based upper-limb 

prostheses. We found that placing electrodes according to the spatial information from the 

heatmap decreases RMSE between the computer’s prediction of the subject’s intended 

movement and the computer’s pre-programmed movement. This allows better control of 

the prosthesis by allowing the user to intuitively control multiple degrees of freedom 

(DOFs) and hence, perform activities of daily living (ADLs) with ease. 

The heatmap (Fig. 3) displays spatial distribution of useful information across the 

96 electrodes. The color intensity represents the selection tendency of an electrode across 

the data from 5 subjects. The electrodes are ‘chosen’ by the Gram-Schmidt 

orthogonalization algorithm based on signal uniqueness. Darker color intensity implies 

that the electrode was ‘chosen’ more times compared to the electrodes corresponding to 

the lighter intensity boxes. More ‘chosen’ electrode is more useful compared to others as 

it records useful EMG signals from the muscle groups underneath it. Each box in Fig. 3 

represents each of the 96 electrodes on the muscle sleeve and the difference in color 

intensity of each box shows that the useful information is not distributed uniformly across 

the forearm, specifically for the DOFs that the subjects mimicked. As the boxes in the 

lower right-hand corner have a darker color intensity compared to the boxes in the upper 

left-hand corner, it implies that the electrodes corresponding to the former are placed in 

more important areas of the forearm, where more unique signals to control various DOFs 



can be found. The information from the heatmap can be used to place ‘n’ number of 

electrodes in the most important areas on the forearm. The heatmap, thus, informs about 

the electrodes placed in more important areas than others to control the DOFs the subjects 

mimicked in our studies. With this information, we can find accurate placement positions 

for the ‘n’ number of electrodes for accurate intuitive functional control of the prosthesis.  

The electrodes incorporated into the control algorithm in both the decreasing as 

well as increasing order of their selection tendency based on the heatmap (Fig. 3) showed 

a decrease in RMSE as the number of electrodes increased (Fig. 4). This is also shown by 

Fig. 5 where the EMG signal for computer’s prediction of the subject’s movement is 

improved at the number of electrodes go from 15 (Fig. 5a) to 96 (Fig. 5 b) The electrodes 

that were placed optimally, that is, in decreasing order of selection tendency, showed a 

sharper decrease in RMSE (blue line in Fig. 4) compared with the inverse-optimal 

placement of electrodes (orange line in Fig. 4). This shows that fewer electrodes are 

needed to control the prosthesis if they are placed optimally. The plot in Fig. 4 also shows 

that with optimal placement, the RMSE levels out at approximately 50 electrodes, but 

with inverse-optimal placement, it does not reach the same value until approximately 90 

electrodes. These results indicate that ~30 fewer electrodes are required when using 

optimal placement over inverse-optimal placement. The difference between the optimal 

and inverse-optimal placement RMSE is the highest between 10-20 electrodes, which 

implies that it is most important to place the electrodes optimally when using any number 

of electrodes between this range. If not placed optimally between this range, say at 15 

electrodes, one may not get an accurate control of the prosthesis because the RMSE value 

will be much higher at this point than if placed optimally. On the contrary, if placed 

inverse-optimally at 8 electrodes, which is the commonly used number of electrodes by 



researchers working with sEMG based upper-limb prosthesis, there is not much difference 

in the RMSE between optimal and inverse-optimal. This implies that at 8 electrodes, one 

cannot achieve accurate control of the prosthesis, even with optimal placement. Given the 

results in Fig. 4, if the electrodes are placed optimally between 10-50 electrodes, the 

prosthesis control will be better than inverse-optimal placement, as the RMSE stops 

changing after 50 electrodes, when placed optimally. This shows that with optimal 

placement of electrodes based on signal uniqueness, we need 50 electrodes, much fewer 

than 90 electrodes with inverse-optimal placement, to achieve accurate prosthesis control 

for 8 DOFs.  

The upper-limb myoelectric (MYO) prostheses have high rejection rates. One of 

the main reasons is the cost and the ineffective intuitive control [13]. The MYO prosthesis 

can be intuitively controlled with EMG signals from the forearm [9]. These can be 

controlled either with intramuscular electromyography (iEMG) or sEMG. iEMG 

prostheses are expensive and requires an invasive surgery [5]. MYO prostheses based on 

the non-invasive sEMG are not clinically viable yet as their functional control is limited 

and has not been fully exploited [8]. Researchers have found that sEMG based prostheses 

have the potential to function the same way as iEMG based prostheses if studied [5]. 

The sEMG prostheses control depends on the electrodes placed on the arm, the 

same way as it depends on implanted electrodes in iEMG controlled prostheses [5]. 

Previous studies [10], [22], [36] have found that increasing the number of electrodes 

improves the prosthesis control which is also shown by our results. As the number of 

electrodes increased (Fig. 4), the RMSE value dropped indicating less difference between 

the computer’s prediction of the subject’s intended movement and the computer’s pre-

programmed kinematics. This implied an improvement in the functional control of the 



prosthesis. 

Up until now, the researchers studying sEMG based upper-limb prostheses have 

usually used up to 8 electrodes to enable the prostheses to control the DOFs similar to 

iEMG based prostheses [5], [22], [25], [37]. Intuitive control of the prosthesis improves 

as the electrodes are increased in number [38] which is in accordance with our results. 

Ryser et al. used 8 electrodes and showed 94% accuracy of three DOFs among healthy 

subjects [25]. Akhtar et al. used 6-8 sEMG electrodes embedded into a prosthetic socket 

to allow the subjects to control five DOFs [39]. Farina et al. used 50 electrodes on the 

upper arm and 50 on the lower [8]. Although this resulted in 89.1% accuracy of nine 

DOFs, the average performance accuracy was lower than Ryer et al. and Akhtar et al. 

studies. A higher number of electrodes than usually used with the sEMG based upper-

limb prostheses showed that there are different regions across the forearm that have more 

useful information than others to control various DOFs performed in daily lives [10]. If 

the electrodes are placed in the areas of useful information across the forearm, the RMSE 

decreases significantly [13]. The decreased RMSE shows improved prosthesis function to 

control multiple DOFs. Our results echoed the same: if the electrodes are placed optimally, 

we need far fewer electrodes to achieve accurate prosthesis control compared to random 

placement. 

One limitation of this research is the small number of subjects. Collecting EMG 

data from more subjects can help solidify the current results. Future work related to this 

topic includes gathering additional data with more subjects and analyzing RMSE trend for 

each DOF separately. This analysis will provide a more accurate and generic number and 

placement of electrodes for controlling multiple DOFs. The additional data could also be 

used to study muscle fatigue from the heavy weight of the prosthesis, another reason 



behind people with amputations not wanting the prostheses. Analyzing the impact of 

fatigue over time and accounting for it in the motor-decode algorithm may help improve 

the performance of the upper-limb prostheses further. Another aspect of this work can be 

to make a new wearable sleeve with a new arrangement of electrodes based on the results 

from the heatmap. The electrodes that are in close proximity to each other and have 

approximately the same number of unique signals can be substituted with one electrode 

placed at the center point of those electrodes. This sleeve can then be tested for functional 

control to see if it provides the similar accuracy in intuitive control.  

This work will improve the functional control of the surface EMG based upper-

limb myoelectric prostheses. Improved functional control will provide intuitive control to 

the user. This will allow the user to perform the 8 DOFs we used in this study intuitively, 

without having to switch between different DOFs. The user will be able to use the 

prostheses like a native hand and perform various activities of daily living with ease and 

comfort. This work can help in psychological as well as emotional recovery process of the 

people with upper-limb amputations who are suffering from post-traumatic stress due to 

their accident that caused the amputation.   
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