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ABSTRACT 
 
 
 
 

On March 4, 2020, DARPA released a call for research proposals that would fund projects 
“in the area of modeling, simulating, and experimentally observing transient disturbances 
(both mechanical and electromagnetic) in the Earth’s atmosphere due to meteorological 
and geophysical sources” [1]. This research would directly apply to their AtmoSense 
(Atmosphere as a Sensor) project that wants to find novel methods for geolocation by 
taking advantage of measured disturbances in the Earth’s atmosphere. A novel approach to 
geolocating earthquakes is by studying the interactions between the ionosphere and the 
disturbed electromagnetic fields from power lines during the event. This paper presents a 
finite-difference time-domain (FDTD) model that simulates a 2D cross section of a power 
line and surrounding space to showcase how the electric fields change during movement. 
A Discrete Fourier Transform is performed on the data to which shows the signals seen 
above the power line. The interactions between shaken power lines and the ionosphere 
could allow researchers to backtrack earthquake locations, giving them another way to 
passively measure earthquake phenomenon and understand how earthquakes affect 
different aspects of the environment.   
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1. INTRODUCTION 
 
 
 
 

On March 4, 2020, DARPA released a call for research proposals that would fund projects 
(starting in December of 2020 at the earliest) “in the area of modeling, simulating, and 
experimentally observing transient disturbances (both mechanical and electromagnetic) in 
the Earth’s atmosphere (from the troposphere through the ionosphere) due to 
meteorological and geophysical sources” [1]. More specifically, DARPA is looking for 
research proposals that can look at disturbances in the atmosphere that can pinpoint 
locations on Earth where natural phenomena are occurring, such as tornadoes, hurricanes, 
or earthquakes.  

This research would directly apply to DARPA’s AtmoSense (Atmosphere as a Sensor) 
project that wants to find novel methods for geolocation by taking advantage of measured 
disturbances in the Earth’s atmosphere. Specifically, AtmoSense wants to understand the 
fundamentals of the energy propagation by answering the following questions: 

1) What is the nature of transmitted signals? 
2) What mode structure (mechanical and electromagnetic) can the mesosphere and 

lower ionosphere support? 
3) What dynamic variables are best measured and at what altitude to capture source 

disturbed information? 

AtmoSense also identifies three technical areas that will try to answer these questions. This 
specific research project applies to technical area 1, the modeling and simulation division 
[1]. 

This project looks to answer this call for research by simulating the result of an earthquake 
disturbing power stations and power lines, which then create electromagnetic ionospheric 
disturbances. With passive detection in the ionosphere, researchers could see disturbances 
in the atmosphere and pinpoint where an earthquake occurred on the surface of the Earth. 
The proposed project will use finite-difference time-domain (FDTD) modeling techniques 
to simulate the changing electromagnetic waves caused by disturbed power lines. This 
project will also use discrete Fourier transforms to study the frequencies of those waves.  

 

1.1   THE IONOSPHERE AND IONOSPHERIC DATA COLLECTION 

The ionosphere is the section of the atmosphere that describes the electron content 
throughout it. It’s measured in the Total Electron Content (TEC) which is measured in 
Total Electron Content Units (TECUs) [2]. Fig. 1 shows how the ionosphere permeates 
almost all layers of the atmosphere. 
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Fig. 1     Illustration showcasing the different layers of the atmosphere, including how the ionosphere 
permeates all layers within the atmosphere [2]. 

Ionosphere disturbances caused by natural disasters or other phenomenon is not new. One 
of the deadliest earthquakes on record, the 2011 Tohoku earthquake, had significant TECU 
perturbations during and after the earthquake. One way to demonstrate ionospheric 
perturbations is to correlate the events with the energetic magnitude in terms TNT 
explosive equivalents [1]. Some significant events with measured disturbances are found 
on Fig. 2. 

 

Fig. 2     Ionospheric Signature Observations for different events occurring on Earth [1].  

Measurements for ionospheric perturbations can happen in a variety of ways. In a 2012 
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study, researchers measured ionospheric signatures caused by the 2011 Tohoku earthquake 
and tsunami using GPS receivers used in Japan’s GEONET network [3]. Japan’s GEONET 
network is widely known for being one of the densest GPS networks in the world and has 
the ability to measure TECUs. These receivers were able to make measurements of the 
disturbances before, during, and after the Tohoku earthquake [3]. 

A different study in 2012 also proved the usefulness of Japans GPS receivers for this kind 
of study. GPS receivers can not only measure the TECU disturbances but also the vertical 
and horizontal movement on the ground during quakes [4]. This is helpful for us because 
it can tell us accurate movement data to simulate for this project.  

Measuring ionospheric changes due to power lines has also been studied. In 2015, a 
research group studied the impact on the ionosphere caused by the increase in the number 
of power lines, power plants, and industrial plants on Earth [5]. The ionosphere changes 
were measured using both ground observations and satellites that used highly sensitive 
magnetic noise detectors. The researchers found that monitoring the fields emitting from 
power lines and power stations could tell them about energy consumption around the globe 
[5]. We believe that we could use similar data and data collection techniques that could 
measure power line movement caused by earthquakes and their subsequent interactions in 
the ionosphere. 

 

1.2   EARTHQUAKE MOVEMENT – LOVE WAVES 

Based on data from the 2011 Tohoku earthquake, the majority of the seismic movement 
was caused by Love waves [4]. Love waves are one of two types of seismic surface waves 
that moves through the earth and shake the ground in a lateral motion [6]. In our simulation, 
the power line moves sideways only, with zero vertical movement, to match these Love 
waves. 

Fig. 3 shows a sequence of a Love wave traveling through media [6]: 

 

Fig. 3     Demonstration of Love wave traveling through a medium (modified from Chang) [6]. 

In the Methodology section of this paper, I explain how the shaking of the line is simulated 
according to this Love wave movement.  
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2.   PURPOSE 
 
 
 
 

On March 18, 2020, a 5.7 magnitude earthquake rocked the Salt Lake Valley. The epicenter 
was about a 45 minute drive away from downtown and caused widespread damage to many 
homes and businesses. Fig. 4 shows some photos taken immediately following the 
earthquake of the damage in downtown Salt Lake City [7].  

 

There were over a dozen aftershocks within the hour after the earthquake [7]. Some of the 
damage occurred at the University of Utah including a campus building getting exterior 
cracks and developing ceiling issues [8]. Kennecott Copper Mine, an open pit min on the 
edge of the Salt Lake Valley, had an acid spill which released a plume of acid into the air. 
Luckily, that spill was non-threatening to the public [8]. The Utah Department of 
Transportation closed a ramp entering Interstate 215 for “three to seven days until a full 
assessment [could] be completed” on the ramp, making it much more difficult for residents 
to commute across the valley [8]. 

However, a 5.7 is not the strongest earthquake that can happen on the Earth’s surface, 
giving rise to the possibility of even more damage to places like the Wasatch Front and 
beyond. According to the Working Group on Utah Earthquake Probabilities, “there was a 
43% chance that the Wasatch Front will experience a large earthquake – magnitude 6.75 
or greater – in the next 50 years.” [8] Residents in the Salt Lake Valley were extremely 
fortunate since no deaths or serious injuries were reported, but that may not be the case in 
the next quake. Any new type of data that we can collect regarding natural disasters like 
earthquakes and their widespread effects could be enlightening and should be studied.  

Fig. 4     Images of building damage from the 5.7 Magna Earthquake. (a) Damage to a building in Downtown 
Salt Lake City. (b) Mobile home in Magna moved off its foundation [7].  

(a) (b) 
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3.   METHODOLOGY 
 
 
 

In this section I will describe the formulation behind the Finite-Difference Time-Domain 
method used in this simulation. This includes the derivation of the method starting with 
Maxwell’s Equations, how we discretize Maxwell’s Equations to be solved in a computer, 
different limitations within the Finite-Difference Time-Domain method, and how we apply 
this method to this specific simulation problem. 

 

3.1   MAXWELL’S EQUATIONS 

Understanding the Finite-Difference Time-Domain method first starts with reviewing the 
derivation of Maxwell’s Equations. Electromagnetics can be summarized by understanding 
that any electric charge will induce an electric field and any electric current will induce a 
magnetic field [9]. Those two fields are coupled and will move through space as 
electromagnetic waves. Any change in one field, in space or time, will change the overall 
wave [9]. Maxwell’s Equations describe the time varying electromagnetic space for any 
electronics problem and are necessary to describe any radiation from any source. 
Maxwell’s Equations are described as four fundamental equations, which are [10]: 

 𝜕𝜕𝑩𝑩
𝜕𝜕𝜕𝜕

 =  −∇ × 𝑬𝑬 −  𝑴𝑴 (1) 

 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑩𝑩 ∙ 𝑑𝑑𝑨𝑨 =  −� 𝑬𝑬 ∙ 𝑑𝑑𝑳𝑳 − 

𝐿𝐿𝐴𝐴

�𝑴𝑴 ∙ 𝑑𝑑𝑨𝑨
𝐴𝐴

 (2) 

 𝜕𝜕𝑫𝑫
𝜕𝜕𝜕𝜕

 =  ∇ × 𝑯𝑯 −  𝑱𝑱 (3) 

 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑫𝑫 ∙ 𝑑𝑑𝑨𝑨 =  −� 𝑯𝑯 ∙ 𝑑𝑑𝑳𝑳 − 

𝐿𝐿𝐴𝐴

�𝑱𝑱 ∙ 𝑑𝑑𝑨𝑨
𝐴𝐴

 (4) 

Equations 1 and 2 are Faraday’s law and Equations 3 and 4 are Ampere’s Law. E represents 
the electric field, H represents the magnetic field, D represents the electric flux density, B 
represents the magnetic flux density, and J represents the electric current density. M 
represents the magnetic current density, which is mathematically analogous to the electric 
current density J. Note that the magnetic current density does not really exist in the physical 
world but will ease in calculations for Finite-Difference Time-Domain methods shown 
later. 

Gauss’ Laws are also important to note as they provide special circumstances in 
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electromagnetics which will help simplify the above four equations. Gauss’ Laws for the 
electric field are [10]: 

∇ ∙ 𝑫𝑫 =  0 (5) 

�𝑫𝑫 ∙ 𝑑𝑑𝑨𝑨 =  0
𝐴𝐴

 (6) 

Gauss’ Laws for the magnetic field are [10]: 

∇ ∙ 𝑩𝑩 =  0 (7) 

�𝑩𝑩 ∙ 𝑑𝑑𝑨𝑨 =  0
𝐴𝐴

 (8) 

In this project the materials used are considered isotropic and nondispersive. In that case, 
D and B can be related to E and H, respectively, in the following way [10]: 

𝑫𝑫 =  𝜀𝜀𝑬𝑬 =  𝜀𝜀𝑟𝑟𝜀𝜀0𝑬𝑬 (9) 

𝑩𝑩 =  𝜇𝜇𝑯𝑯 =  𝜇𝜇𝑟𝑟𝜇𝜇0𝑯𝑯 (10) 

where ε represents the electrical permittivity and μ represents the magnetic permeability 
[10]. The current density and magnetic current density are also considered independent 
from E and H respectively since they are defined as independent sources. Equations for 
the electric and magnetic current densities can be re-written as follows [10]: 

𝑱𝑱 = 𝑱𝑱𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝜎𝜎 𝑬𝑬 (11) 

𝑴𝑴 =  𝑴𝑴𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝜎𝜎∗𝑯𝑯 (12) 

We can use these equations to simplify Maxwell’s Equations so they can be eventually 
used for the Finite-Difference Time-Domain method. Using the conditions described by 
Gauss’ Laws in Equations 5 – 8 and substituting Equations 9 – 12 into Equations 1 and 3, 
we eventually end up with the curl equation of Maxwell’s Equations for linear, isotropic, 
nondispersive medium [10]: 

  𝜕𝜕𝑯𝑯
𝜕𝜕𝜕𝜕

 =  −
1
𝜇𝜇
∇ × 𝑬𝑬 −

𝟏𝟏
𝝁𝝁

(𝑴𝑴𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝜎𝜎∗𝑯𝑯) (13) 

 𝜕𝜕𝑬𝑬
𝜕𝜕𝜕𝜕

 =  
1
𝜀𝜀
∇ × 𝑯𝑯 −

1
𝜀𝜀

 (𝑱𝑱𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝜎𝜎𝑬𝑬) (14) 

These equations are the most useful when solving large electromagnetic problems and form 
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the basis for Finite-Difference Time-Domain method. Next, we will simplify Maxwell’s 
Equations into 1 and 2 dimensions. 

 

3.2   MAXWELL’S EQUATIONS IN 1-DIMENSION AND 2-DIMENSIONS 

3.2.1   Derivation of Maxwell’s Equations for 1-Dimension 

Maxwell’s Equations can be simplified by looking at the equations in only one dimension. 
This can be helpful if we want to solve Maxwell’s Equations in 1D situations, such as 
determining the voltage and current that runs through a transmission line.  

First, let’s expand Maxwell’s Equations from the curl definition into their attributed partial 
differentials [10]: 

 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

 =  
1
𝜇𝜇
�
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 − (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝜎𝜎∗𝐻𝐻𝑥𝑥)� (15) 

 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

 =  
1
𝜇𝜇
�
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

 − (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 + 𝜎𝜎∗𝐻𝐻𝑦𝑦)� (16) 

 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

 =  
1
𝜇𝜇
�
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

 − (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑧𝑧 + 𝜎𝜎∗𝐻𝐻𝑧𝑧)� (17) 

 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

 =  
1
𝜀𝜀
�
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

− �𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝜎𝜎𝐸𝐸𝑥𝑥�� (18) 

 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

 =  
1
𝜀𝜀
�
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

− �𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 + 𝜎𝜎𝐸𝐸𝑦𝑦�� (19) 

 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 =  
1
𝜀𝜀
�
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

− �𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑧𝑧 + 𝜎𝜎𝐸𝐸𝑧𝑧�� (20) 

We consider waves that move in one dimension to be Transverse Electromagnetic Waves, 
or TEM Waves [11]. TEM waves are considered for many flat waveguide applications such 
as microstrip transmission lines. Standard convention states that the direction of 
propagation is in the z direction with uniformity in the y direction. For the TEM standard 
convention, we can therefore assume that partial y and z derivatives equal zero [10]. TEM 
is also defined where Ez = 0 and Hz = 0, so any source in those directions will equal zero 
as well. For the one dimension case, any partial derivative that is dependent on z or y is 
equal to zero, drastically simplifying the six equations above to three [10].  
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 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

 =  
1
𝜇𝜇
�
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 − (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 + 𝜎𝜎∗𝐻𝐻𝑦𝑦)� (21) 

 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 =  
1
𝜀𝜀
�
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

− �𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑧𝑧 + 𝜎𝜎𝐸𝐸𝑧𝑧�� (22) 

We will use these two equations when generating equations for the Finite-Difference Time-
Domain method. 

3.2.2   Derivation of Maxwell’s Equations in 2-Dimensions 

As we did for Maxwell’s Equations in 1D, we will derive them again for Maxwell’s 
Equations in 2D. First, recall Equations 15 through 20. Just as the 1-dimensional case is 
described by the Transverse Electromagnetic Mode (TEM), our 2-dimensional case will be 
described by the Transverse Magnetic Mode (TM) [11]. The Transverse Magnetic Mode 
is characterized by Ez ≠ 0 and Hz = 0, so the electric field propagates in the z-direction. The 
TM mode is also considered uniform in the z-direction, so any partial differential with 
respect to z or any magnetic source in the z direction within Maxwell’s Equations will 
become zero. We will end up with the following three equations [10]: 

 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

 =  
1
𝜇𝜇
�−

𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 − (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝜎𝜎∗𝐻𝐻𝑥𝑥)� (23) 

 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

 =  
1
𝜇𝜇
�
𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

− (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 + 𝜎𝜎∗𝐻𝐻𝑦𝑦)� (24) 

 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 =  
1
𝜀𝜀
�
𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

− �𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑧𝑧 + 𝜎𝜎𝐸𝐸𝑧𝑧�� (25) 

A two-dimensional model of Maxwell’s Equation is a little more complicated than the 1-
directional case. A good example of a 2-dimensional problem builds off our transmission 
line example used previously. Instead of focusing on the electromagnetic fields within the 
line, we’ll focus on the fields outside the line. We can assume again that structure extends 
to infinity along the z-axis with uniform waves. However, there are variations in both the 
x and y axes as the electromagnetic field propagates away perpendicular to the line. We 
use the TM mode definition for this problem because it does a good job describing 
problems describing radiation [10]. 

We will use the above three equations to derive the Finite-Difference Time-Domain 
method for Maxwell’s Equations in 2-dimensions. 

 

3.3 INTRODUCTION TO FINITE-DIFFERENCE TIME-DOMAIN METHOD 

Maxwell’s Equations are difficult to calculate over a large, continuous range of points in 
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space. For larger scale applications, this requires the use of computers to quickly calculate 
the equations for that large space. However, Maxwell’s Equations are partial differential 
equations that expand over continuous space rather than discretized points. In order for the 
computer to quickly solve Maxwell’s Equations we must provide a discretized version of 
the equations.  

Discretization of mathematical formulae is not new or novel by any means. A commonly 
recognized discretized mathematical formula is the use of Riemann Sums when computing 
integrals. Riemann Sums easily break up the area under a curve into discrete rectangles or 
trapezoids to approximate the area. The more rectangles or trapezoids that are used, the 
more exact the answer is. Fig. 5 shows an example of Reimann Sums using trapezoids to 
find the area under a curve. 

The Finite-Difference Time-Domain method can be considered analogous to the method 
of Riemann Equations: as Riemann Equations approximate the integral of a curve, the 
Finite-Difference Time-Domain method approximate Maxwell’s Equations over a large 
area. Finite-Difference Time-Domain, commonly known as FDTD, is used in 
electromagnetic computations in some engineering CAD software. 

 

Fig. 5 The area under a curve computed using a Riemann Sums technique that adds discrete trapezoids. 
The more trapezoids that are used under the curve, the more accurately the area under is calculated [12]. 

3.3.1   The Central Difference Theorem 

FDTD can be used in one, two, and three dimensions. For this research project, only the 
one and two dimension cases are studied. For ease of understanding, let’s begin with 
discussion of the 1D case. Let’s return to the transmission line example. We can use FDTD 
to solve the values of the electric and magnetic fields along that line at any discretized point 
along it. If we use many discretized points, the better our analysis is going to be. 

Recall the equations for electric and magnetic fields from Maxwell’s Equations for the 1 
dimensional case, which are listed as Equations 21 and 22. The partial differential 
equations given are coupled together and must be solved simultaneously – however, 
computers cannot solve partial differential equations like this. 
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What computers can solve are basic arithmetic equations, similar to the Riemann Sums. A 
common way to arithmetically solve partial derivatives is the Central Difference Theorem, 
which states [13]: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 ≈  
𝑢𝑢 �𝑥𝑥, 𝑡𝑡 +  ∆𝑡𝑡2 �  −  𝑢𝑢 �𝑥𝑥, 𝑡𝑡 −  ∆𝑡𝑡2 �

∆𝑡𝑡
 +  𝑂𝑂[(∆𝑡𝑡)2] (26) 

where the O term arises from the Taylor series expansion of 𝑢𝑢(𝑥𝑥, 𝑡𝑡 + ∆𝑡𝑡) [13]. FDTD uses 
the Central Difference Theorem to approximate the partial derivatives in Maxwell’s 
Equations, which can be applied to any dimension.  

The Central Difference Theorem, however, does not entirely solve our coupled equation 
issue. To solve this, we can choose specific geometry to solve the Central Difference 
Theorem that more or less allows us to solve the equations simultaneously. The geometry 
we use is based upon the Yee Grid [10]. 

 

3.4   THE YEE GRID 

In 1966, Kane Yee developed a geometric algorithm that “robustly represents both the 
differential and integral forms of Maxwell’s Equations.” [10] Yee’s geometry in 1D 
samples the electric field at every discrete point and the magnetic field at every half discrete 
point. In a discretized sense, the electric field can be solved by using the magnetic field 
points that surround it and vice versa. A visual of the three dimensional Yee grid is given 
in Fig. 6 [10]. 

Using the combination of the Central Difference Theorem and the Yee Grid allows us to 
solve Maxwell’s Equations numerically. The neighboring values on the Yee Grid provide 
which values to use when solving the coupled Maxwell’s Equations in the Central 
Difference Equation. This method is called “leapfrogging” and allows us to solve coupled 
equations.  

Fig. 7 shows the Yee Grid implemented in 1-dimension, which will aid in the discussion 
about leapfrogging. In the Yee Grid, the electric and magnetic fields are staggered against 
each other by one half step in time and space. The electric fields are solved on integer 
values on the number line, and the magnetic fields are solved on integer + 0.5 values on 
the number line. Then, each value of either the electric field or magnetic field is solved 
after every half time step, each field taking turns and being updated over time. This 
leapfrogging effect allows us to solve Maxwell’s Equations simultaneously in a discretized 
fashion [10]. 
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Fig. 6 3-dimensional Yee Grid, demonstrating electric and magnetic field components at discretized points 
in space [10]. 

 

3.5 FINITE-DIFFERENCE TIME-DOMAIN METHOD EQUATIONS 

3.5.1   Finite-Difference Time-Domain Notation 

Since Maxwell’s Equations can be dependent upon four variables at once, it’s necessary to 
create easier notation to reference which value of time and which point in space we are 
referencing at any given time on the Yee Grid. As a general case, we will discuss the 
notation in three dimensions. Derivation for the first and second dimension will be trivial 
once the derivation for the third dimension is explained. 

 

Fig. 7 Demonstration of leapfrogging effect on the electric and magnetic fields. Electric fields are solved 
for integer time and space steps, and magnetic fields are solved for integer + 0.5 time and space steps [10]. 
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In 3-dimensions our plane exists in the (𝑖𝑖, 𝑗𝑗,𝑘𝑘) vector space. Since we are discretizing our 
space in terms of Δx, Δy, and Δz, respectively, we will consider our vector space in terms 
of (𝑖𝑖∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦,𝑘𝑘∆𝑧𝑧). Since we are also discretizing time as Δt, any point in time will be 
considered as (𝑛𝑛∆𝑡𝑡). Overall, any 3-dimensional variable that is also dependent in time 
will be described with the following notation [10]: 

 𝑢𝑢(𝑖𝑖∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦,𝑘𝑘∆𝑧𝑧,𝑛𝑛∆𝑡𝑡)  =  𝑢𝑢𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑛𝑛  (27) 

Trivially, the first-dimension and second-dimension cases, respectively, are as follows: 

 𝑢𝑢(𝑖𝑖∆𝑥𝑥,𝑛𝑛∆𝑡𝑡)  =  𝑢𝑢𝑖𝑖𝑛𝑛 (28) 

 𝑢𝑢(𝑖𝑖∆𝑥𝑥, 𝑗𝑗∆𝑦𝑦,𝑛𝑛∆𝑡𝑡)  =  𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛  (29) 

3.5.2   Finite-Difference Time-Domain in 1-Dimension 

When we apply the Central Difference Theorem described in Equation 26, the geometry of 
the Yee Grid, and use the notation given in Equation 28, we can discretize the 1-
dimensional Maxwell’s Curl Equations [14].  

 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛+1  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

∆𝑡𝑡
 =  

𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖−1𝑛𝑛

𝜀𝜀𝑖𝑖∆𝑥𝑥
−
𝜎𝜎𝑖𝑖

2𝜀𝜀𝑖𝑖
(𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛  +  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛−1)  −  𝐽𝐽𝑖𝑖𝑘𝑘 (30) 

 𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛−1

∆𝑡𝑡
 =  

𝐸𝐸𝐸𝐸𝑖𝑖+1𝑛𝑛  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

𝜇𝜇𝑖𝑖∆𝑥𝑥
−
𝜎𝜎𝑖𝑖∗

2𝜇𝜇𝑖𝑖
(𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛+1  +  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛)  −  𝑀𝑀𝑖𝑖

𝑘𝑘 (31) 

We can group the constants in Equation 30 and Equation 31 to make simplifying and 
solving the equations easier. We define our constants to be [14]: 

 𝐶𝐶𝑎𝑎  =  
2𝜀𝜀𝑖𝑖  − 𝜎𝜎𝑖𝑖∆𝑡𝑡
2𝜀𝜀𝑖𝑖 + 𝜎𝜎𝑖𝑖∆𝑡𝑡

 (32) 

 𝐶𝐶𝑏𝑏 =
2∆𝑡𝑡

∆𝑥𝑥(2𝜀𝜀𝑖𝑖 + 𝜎𝜎𝑖𝑖∆𝑡𝑡)
 (33) 

 
𝐷𝐷𝑎𝑎  =  

2𝜇𝜇𝑖𝑖  − 𝜎𝜎𝑖𝑖∗∆𝑡𝑡
2𝜇𝜇𝑖𝑖 + 𝜎𝜎𝑖𝑖∗∆𝑡𝑡

 (34) 

 𝐷𝐷𝑏𝑏 =
2∆𝑡𝑡

∆𝑥𝑥(2𝜇𝜇𝑖𝑖 + 𝜎𝜎𝑖𝑖∗∆𝑡𝑡)
 (35) 

If we use the constants defined above and solve for the staggered values of E and H, we 
will arrive at our final equations for the one dimensional Finite-Difference Time-Domain 
case [14]: 
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 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛+1 = 𝐶𝐶𝑎𝑎𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛  + 𝐶𝐶𝑏𝑏(𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖−1𝑛𝑛 ) −  𝐽𝐽𝑖𝑖𝑘𝑘 (36) 

 𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛 = 𝐷𝐷𝑎𝑎𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛−1  +  𝐷𝐷𝑏𝑏(𝐸𝐸𝐸𝐸𝑖𝑖+1𝑛𝑛  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛) −  𝑀𝑀𝑖𝑖
𝑘𝑘 (37) 

3.5.3   Finite-Difference Time-Domain in 2-Dimensions 

We will apply the Yee Grid and the Central Difference Theorem to the 2-dimensional cases 
of Maxwell’s Equations the same way we applied them to the 1-dimensional case. This 
will discretize the 2-dimension case of the Finite-Difference Time-Domain method and 
will give us the following three equations [10]: 

 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛+1  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

∆𝑡𝑡
 =  

𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖−1𝑛𝑛

𝜀𝜀𝑖𝑖∆𝑥𝑥
−
𝜎𝜎𝑖𝑖

2𝜀𝜀𝑖𝑖
(𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛  +  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛−1)  −  𝐽𝐽𝑖𝑖𝑘𝑘 (38) 

 𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛−1

∆𝑡𝑡
 =  

𝐸𝐸𝐸𝐸𝑖𝑖+1𝑛𝑛  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

𝜇𝜇𝑖𝑖∆𝑦𝑦
−
𝜎𝜎𝑖𝑖∗

2𝜇𝜇𝑖𝑖
(𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛+1  +  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛)  −  𝑀𝑀𝑖𝑖

𝑘𝑘 (39) 

 𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛−1

∆𝑡𝑡
 =  

𝐸𝐸𝐸𝐸𝑖𝑖+1𝑛𝑛  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

𝜇𝜇𝑖𝑖∆𝑥𝑥
−
𝜎𝜎𝑖𝑖∗

2𝜇𝜇𝑖𝑖
(𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛+1  +  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛)  −  𝑀𝑀𝑖𝑖

𝑘𝑘 (40) 

Another quick trick we want to complete before we continue is breaking up the Ez field 
into two fields – this is called the split Ez field [10]. This mathematically won’t make a 
difference in our derivation but is necessary when we apply the Berenger Perfectly 
Matched Layer (PML) boundary conditions later. Boundary conditions are described in 
section 4.6 of this paper. 

The easiest way to differentiate between the two split Ez fields is to split them along the x 
and y component of the traveling wave. Our split wave formulation will look like this [10]: 

 𝐸𝐸𝑧𝑧 = 𝐸𝐸𝑧𝑧𝑧𝑧  + 𝐸𝐸𝑧𝑧𝑧𝑧 (41) 

When we calculate our field within the Finite-Difference Time-Domain loop, we will add 
our split fields as described in Equation 41 before updating our magnetic fields. That way 
we can still use the total Ez field to solve Equations 39 and 40. It’s also important to note 
that the source value, J, is only added to the total value of the electric field when 
implemented in the FDTD code. J is left in the equations listed below for simplicity and 
mathematical symmetry. 

Our four discretized Maxwell’s Equations, including the split field formulation, will look 
like this [10]: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛+1  −  𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

∆𝑡𝑡
 =  

𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖−1𝑛𝑛

𝜀𝜀𝑖𝑖∆𝑥𝑥
−
𝜎𝜎𝑖𝑖

2𝜀𝜀𝑖𝑖
(𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛  +  𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛−1)  −  𝐽𝐽𝑖𝑖𝑘𝑘 (42) 
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 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛+1  −  𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

∆𝑡𝑡
 =  

𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖−1𝑛𝑛

𝜀𝜀𝑖𝑖∆𝑥𝑥
−
𝜎𝜎𝑖𝑖

2𝜀𝜀𝑖𝑖
(𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛  +  𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛−1)  −  𝐽𝐽𝑖𝑖𝑘𝑘 (43) 

 𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛−1

∆𝑡𝑡
 =  

𝐸𝐸𝐸𝐸𝑖𝑖+1𝑛𝑛  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

𝜇𝜇𝑖𝑖∆𝑦𝑦
−
𝜎𝜎𝑖𝑖∗

2𝜇𝜇𝑖𝑖
(𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛+1  +  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛)  −  𝑀𝑀𝑖𝑖

𝑘𝑘 (44) 

 𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛−1

∆𝑡𝑡
 =  

𝐸𝐸𝐸𝐸𝑖𝑖+1𝑛𝑛  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛

𝜇𝜇𝑖𝑖∆𝑥𝑥
−
𝜎𝜎𝑖𝑖∗

2𝜇𝜇𝑖𝑖
(𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛+1  +  𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛)  −  𝑀𝑀𝑖𝑖

𝑘𝑘 (45) 

As we did in the 1-dimension case, we can simplify Equations 42 through 45 by grouping 
constant values as follows [10]: 

𝐶𝐶𝑎𝑎𝑎𝑎  = 𝐶𝐶𝑎𝑎𝑎𝑎 =  
2𝜀𝜀𝑖𝑖  − 𝜎𝜎𝑖𝑖∆𝑡𝑡
2𝜀𝜀𝑖𝑖 + 𝜎𝜎𝑖𝑖∆𝑡𝑡

 (46) 

𝐶𝐶𝑏𝑏𝑏𝑏 = 𝐶𝐶𝑏𝑏𝑏𝑏 =
2∆𝑡𝑡

∆𝑥𝑥(2𝜀𝜀𝑖𝑖 + 𝜎𝜎𝑖𝑖∆𝑡𝑡)
 (47) 

𝐷𝐷𝑎𝑎𝑎𝑎 = 𝐷𝐷𝑎𝑎𝑎𝑎 =  
2𝜇𝜇𝑖𝑖  − 𝜎𝜎𝑖𝑖∗∆𝑡𝑡
2𝜇𝜇𝑖𝑖 + 𝜎𝜎𝑖𝑖∗∆𝑡𝑡

 (48) 

𝐷𝐷𝑏𝑏𝑏𝑏 = 𝐷𝐷𝑏𝑏𝑏𝑏 =
2∆𝑡𝑡

∆𝑥𝑥(2𝜇𝜇𝑖𝑖 + 𝜎𝜎𝑖𝑖∗∆𝑡𝑡)
 (49) 

Note that we know have constants for all the fields and their associated x and y components. 
Even though they are equivalent now, this distinction will be important later when 
discussing boundary conditions. 

Using the constants defined above and using the split field formulation, we can solve for 
our final equations that we will use for the 2-dimensional case for the Finite-Difference 
Time-Domain Method [10]: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛+1 = 𝐶𝐶𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛  + 𝐶𝐶𝑏𝑏𝑏𝑏(𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖−1𝑛𝑛 ) −  𝐽𝐽𝑖𝑖𝑘𝑘 (50) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛+1 = 𝐶𝐶𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛  + 𝐶𝐶𝑏𝑏𝑏𝑏(𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛  −  𝐻𝐻𝐻𝐻𝑖𝑖−1𝑛𝑛 ) −  𝐽𝐽𝑖𝑖𝑘𝑘 (51) 

𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛 = 𝐷𝐷𝑎𝑎𝑎𝑎𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛−1  +  𝐷𝐷𝑏𝑏𝑏𝑏(𝐸𝐸𝐸𝐸𝑖𝑖+1𝑛𝑛  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛) −  𝑀𝑀𝑖𝑖
𝑘𝑘 (52) 

𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛 = 𝐷𝐷𝑎𝑎𝑎𝑎𝐻𝐻𝐻𝐻𝑖𝑖𝑛𝑛−1  + 𝐷𝐷𝑏𝑏𝑏𝑏(𝐸𝐸𝐸𝐸𝑖𝑖+1𝑛𝑛  −  𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛) −  𝑀𝑀𝑖𝑖
𝑘𝑘 (53) 

3.5.4   The Courant Limit 

The Finite-Difference Time-Domain method works well for almost any electromagnetics 
application. However, we must be mindful of limitations within the math, so the simulation 
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works properly. 

The most common way for FDTD to be implemented is to use a loop that solves the 
different values of the electric and magnetic field iteratively. Since we discretized the value 
of 𝜕𝜕𝜕𝜕 we need to give it a defined value. 

FDTD relies upon the idea of leap-frogging so each value of the electric and magnetic field 
is solved and updated to help solve the next values of the electric and magnetic fields. If 
we solve the equations and update too quickly, our simulation becomes unstable. The limit 
that describes how quickly our loops can be updated is called the Courant Limit. 

The Courant Limit is defined as [10]: 

∆𝑡𝑡 <  
∆𝑥𝑥
𝑐𝑐√2

 (54) 

where c is defined by the speed of wave propagation. If this is through air or a vacuum, c 
is equal to the speed of light. 

If the Courant Limit is exceeded and the simulation updates too quickly, the simulation 
“explodes” and becomes incredibly unstable. Fig. 8 shows a 1-dimensionsal FDTD 
example and demonstrates how the simulation becomes unstable when the Courant Limit 
is exceeded. 

 

Fig. 8 1-dimensional FDTD simulation where the Courant Limit is exceeded. The simulation explodes and 
is unstable. 

 
3.6 BOUNDARY CONDITIONS 

In FDTD we are limited in scope on what we can simulate because our computing abilities 
are not infinite and we have to set boundaries. In this simulation, we want our boundaries 
to act like the boundaries of a windowpane – if we were to watch something occur outside, 
the windowpane limits how much we can see but has no effect on what happens. Similarly, 
our boundaries need to not affect what happens in the simulation.  

There are two main kinds of boundary conditions that are used in this code. The first 
boundary condition is the Perfect Electric Conductor (PEC) boundary condition, and the 
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second boundary condition we use is the Berenger Perfectly Matched Layer (PML) 
boundary condition. 

3.6.1   The Perfect Electric Conductor Boundary Condition 

A Perfect Electric Conductor (PEC) is described by any material that has an infinite 
conductivity associated with it. PECs are often used to approximate metals since they are 
extremely easy to work with. A PEC material means that no electric field can exist within 
it and any E field is reduced to zero. 

In an FDTD code, the PEC can be easily added to any boundary condition by only allowing 
the E field along the edges to equal zero. This emulates an electromagnetic wave entering 
a PEC material and immediately attenuating to zero. This also means we will see reflections 
from the wave hitting the boundary the same way we would expect an electromagnetic 
wave reflecting off of any metal surface in real life [14].  

A drawback to the PEC boundary condition is that the simulation window now performs 
like a cavity. If we want to simulate anything that extends beyond our simulation window 
or that does not perform like a PEC, we will need different boundary conditions. 

3.6.2   The Berenger Perfectly Matched Layer Boundary Condition 

The Berenger Perfectly Matched Layer (PML) Boundary Condition is a premium way to 
simulate our window without getting any unwanted reflections. The Berenger PML works 
to absorb the electric and magnetic fields that hit the edges of the simulation grid, so the 
simulation space is unaffected. This PML uses the split field formulation described in 
Section 4.5 to absorb any incident wave at any angle or magnitude. Reflections seen when 
using the Berenger PML are 1/3,000th of the reflection seen using other absorbing boundary 
conditions [10]. 

PML boundaries use thick layers of the simulation grid which slowly increase the 
conductivity values seen in the simulation space until the conductivity is large enough for 
the wave to be absorbed like it would in a PEC. The slow increase of the sigma values in 
the layer also avoids the reflections that we saw from the PEC boundary condition. The 
structure of a PML matches the structure of the split field FDTD equations so the waves 
are absorbed correctly. 

Simulations with lower frequencies require thicker PMLs. High frequency applications, 
say in the 1 GHz range, can get away with PML layers that are around 10 grid cell lengths 
thick. However, since our simulation uses an extremely low frequency, around 60 Hz, we 
will need to use a PML that is around 100 grid cells thick. 

Applying the PML on different edges of the simulation window will not be the same on all 
sides. Only certain sigma values will need to be increased along certain edges. This requires 
that our split field formulation have different x and y values for the electrical and magnetic 
conductivity. This differentiation is why we defined separate coefficient values for the x 
and y fields, even though at first glance they look the same. 
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Fig. 9 shows a graphical representation of the PML layers in a simulation window, and Fig. 
10 demonstrates how the conductivity slowly increases in value to the final edge with the 
PEC boundary. 

 

Fig. 9     Graphical representation of the Berenger Perfectly Matched Layer [10] 
 

3.7 PARALLEL CODE AND MESSAGE PASSING INTERFACE STANDARDS 

While the Finite-Difference Time-Domain method is a great tool for simulating 
electromagnetics problems, it is computationally expensive. The Courant Limit described 
earlier can create an issue if the limit is low. For example, if the Courant Limit is extremely 
small, on the order of nanoseconds, the simulation will need to update the fields over 200 
million times to represent something happening less than 1 second of real time. 

While a common tool for simulating FDTD includes MATLAB, MATLAB is too slow to 
efficiently compute a simulation space that requires millions of updates. For this project 
we investigated if using the supercomputers at the University of Utah Center for High 
Performance Computing would be a reliable option to simulate our problem more quickly. 
At first, the results from the supercomputer were compelling – a simulation that took over 
12 hours in MATLAB only took around 45 minutes in the supercomputer. However, this 
approach was let go due to segmentation errors within the code that we could not resolve. 
That being said, a quick note on Parallel Code and Message Passing Interface Standards is 
still a worthy discussion since it is a promising avenue for projects like this one. 
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Fig. 10     Demonstration of the increased sigma values for the Berenger Perfectly Matched Layer. The PML 
is exaggerated so it is easy to see the values of sigma increase. 

3.7.1   Description of Parallel Computing and Message Passing Interface Standards 

In a nutshell, Parallel Computing is when multiple processors are working on a different 
portion of the same problem at the same time. This allows for the processor to solve a much 
smaller problem so the time for computation is slashed. However, as discussed in Section 
4, the Yee grid geometry requires that neighboring values of the electric and magnetic 
fields be known so updates can be performed.  

Message Passing Interface (MPI) standards fixes this problem. MPI standards often come 
as pre-programmed functions in lower level codes like Fortran. These functions describe 
how data and information are shared among processors. Fig. 11 showcases what parallel 
code and MPI standards may look like for a problem what was expanded from one 
processor to four processors. 
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Fig. 11     Graphical description of parallel code and MPI standards. The original simulation grid is the space 
of one grid. Parallel code allocates the same grid space on each processor to solve the problem, but only 
performs the computations on its much smaller corner. The arrows on the grids represent the MPI standard 
functions sending information about the data along the grid edges to the other processors. 

3.8 APPLICATION OF FDTD FOR EARTHQUAKE SIMULATION 

To simulate a power line moving due to the earthquake, we will need to do three things. 
First, we will need to determine a way to simulate the movement of the line in a discretized 
way. Second, we will need to set boundary conditions that mirror what we would see for 
this scenario. Third, we will need to determine where we will observe the electromagnetic 
lines that are propagating away from the power line. 

3.8.1   Simulating Movement of Power Line 

We decided to model the movement of the power line as described in Surface Waves of the 
2011 Tohoku earthquake: Observations of Taiwan’s dense high-rate GPS network [4]. In 
the paper we are told the power line moves due to a Love Wave, is accelerated laterally at 
𝑎𝑎 =  2.99𝑔𝑔 𝑚𝑚

𝑠𝑠2
, and travels 𝑑𝑑 =  2.4 𝑚𝑚. To make the movement computation easier, we 

decided to make our FDTD grid values equal half of that movement, or 1.2 meters. 

If we assume the power line is starting from rest before being shaken by the earthquake, 
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we also know that 𝑣𝑣0  =  0 𝑚𝑚
𝑠𝑠

. Using these three knowns, we can use the Kinematic 
Equations from basic physics to solve for both the maximum velocity of the line and the 
total time that it will take to move the line [15]. 

Since the line starts at rest and the acceleration is constant, we know that the maximum 
velocity will occur at the mid-way point of travel, or at 1.2 meters. We can solve for the 
maximum velocity as follows: 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 =  �𝑣𝑣02  +  2𝑎𝑎𝑑𝑑1/2 = 8.386
m
s

 (55) 

Now knowing the maximum velocity, we can solve for the amount of time it takes to start 
from rest and accelerate to the final velocity. Once that time is solved, we can multiply it 
by two to get the final total time of movement.  

𝑡𝑡1/2 =
2𝑑𝑑1/2

(𝑣𝑣0 + 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚)  =  0.286 𝑠𝑠 (56) 

𝑡𝑡 = 2𝑡𝑡1/2 =  0.572 𝑠𝑠 (57) 

The amount of time it takes the line to move 2.4 meters at an acceleration 𝑎𝑎 =  2.99𝑔𝑔 𝑚𝑚
𝑠𝑠2

 
is a little over half of a second.  

We can divide t by the Courant Limit to determine how many loops are needed in our 
FDTD code to model this entire movement. Using Equation 54, we can solve for the 
Courant Limit: 

∆𝑡𝑡 =  2.828 𝑛𝑛𝑛𝑛 (57) 

and then solve for the number of loops, n: 

𝑛𝑛 =
𝑡𝑡
∆𝑡𝑡

= 2.024 × 108 (57) 

Since we defined our grid space to be 1.2 meters, we can perform a cool trick to simulate 
the movement of the line in a discrete way. Since the total distance, 2.4 meters, is 
represented by 2 grid cells and the source already exists within one grid cell, we can 
simulate the movement by slowly turning off the center source grid cell and slowly turn on 
the source to the grid cell to the right. This turning on and off movement is just as fast as 
the movement we just determined above. Fig. 12 shows a demonstration of this turning on 
and off movement on a grid, and Fig. 13 shows how quickly the movement occurs over the 
total number of loops n.  
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Fig. 12     Demonstration on how the center cell's source is slowly turned off and the cell adjacent to the 
center is slowly turned on. 

 

Fig. 13     Graph displaying the percentage of total movement that has occurred per number of time steps. 
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3.8.2   Boundary Conditions for Simulation 

Every edge in our simulation, except the bottom, will want to look like free space. On the 
left, right, and top edges of our simulation we will want to make our simulation absorb any 
electromagnetic radiation, so it looks like that the simulation space is endless. To achieve 
this, we will use a Berenger Perfectly Matched Layer boundary condition as described in 
Section 4.6. 

The bottom boundary, however, will want to look like the ground, just as if a power line 
was strung above it. We can assume the ground at this low of a frequency will act like a 
PEC.  

We know that the ground will behave like a PEC based on its material parameters. 
According to the authors in Fundamentals of Applied Electromagnetics any material that 
has properties  𝜀𝜀

′′

𝜀𝜀′
 >  100 is considered a good conductor [9]. A good conductor can be 

easily approximated with a PEC. 

For dry ground, the permittivity, or 𝜀𝜀′, is around 3𝜀𝜀𝑟𝑟  =  26.56 𝑝𝑝𝑝𝑝
𝑚𝑚

 [9].  

𝜀𝜀′′ is defined by the conductivity, σ, divided by the angular frequency, ω. The conductivity 
of dry ground is around 10−4  𝑆𝑆

𝑚𝑚
 [9]. Since we are looking at a power line that has a 

frequency of 60 Hz, we know that 𝜀𝜀′′ =  10−4

2𝜋𝜋×60
 =  265.258𝑒𝑒 − 9.  

We can find the ration of  𝜀𝜀
′′

𝜀𝜀′
:  

𝜀𝜀′′

𝜀𝜀′
 =  

265.258𝑒𝑒 − 9
26.56𝑒𝑒 − 12

 =  9,986.4 > 100 (58) 

The ratio is much greater than 100, so we can make the bottom boundary perform as a PEC.  

 

3.8.3   Observing the Electromagnetic Fields 

In order to evaluate the effectiveness of our simulation we need to analyze our 
electromagnetic fields. To do this, we will collect values of the electromagnetic field at an 
observation point and perform a Discrete Fourier Transform on the data. This will tell us 
what frequency we see in space around the line and verify that our simulation is working 
properly. 

We want to know what the electric fields will look like above the line as they propagate 
towards the ionosphere. Good practice also says that our observation point be at least 20 
grid cells away from any boundary to decrease the risk of seeing unwanted reflections or 
other affects from the simulation. For this simulation, we chose an observation point that 
was halfway between the center of the grid and the bottom of the top PML.  
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4.   RESULTS 
 
 
 
 

To study the electromagnetic waves that were present in the simulation space we collected 
the electric field amplitude over time. Since our parallel code was not working, we went 
back to MATLAB, which is known to be slow and inefficient for this type of simulation. 
Since the computation time is increased when using MATLAB, we only simulated the first 
18 million time steps, which also represents three periods of the frequency in the line. 
Performing the FDTD simulation in MATLAB with the thick PML layers for three time 
periods caused the simulation to last around 12 hours or more per simulation.  

The first set of data collected was the stationary line with a 60 Hz signal hanging over a 
PEC ground, seen in Fig. 14. That data showed that we see a decent sinusoidal wave above 
the observation point. The discrepancies in the beginning of the waveform are most likely 
caused by both reflections from the ground and the quick turn on of the waveform in the 
space. 

 

Fig. 14     Time waveform of the line without simulated movement. 

The next simulation collected was the line moving at the same rate caused by the Love 
Wave, seen in Fig. 15. Since we only simulated three time periods of movement, this 
corresponded to approximately 8% of the total movement simulated. 
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Fig. 15     Time waveform of the line with simulated movement. This movement corresponded with the Love 
wave data and corresponded to about 8% of the total movement. 

The moving waveform also show strange peaks at the beginning, which is most likely 
caused by the sharp turning on of the line. The rest of the interference is most likely caused 
by PEC reflections and interactions between the two sources in the simulation. 

Discrete Fourier Transforms (DFT) cannot be accurately computed on continuous time 
signals. If they are, the DFT shows periodicities that are inaccurate. In order to compute 
the DFT of our observation to determine the frequencies present, we subtracted the 
stationary waveform and the moving line wave form from each other. Fig. 16 shows this 
subtracted wave form. 

 

Fig. 16     Time waveform of the stationary wave subtracted from the moving wave. 
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Fig. 17 shows the resulting DFT which was computed on the subtracted waveform. While 
there are other peaks in the data, the largest and most prominent peak occurs at 63.06 Hz.  

 

Fig. 17     Discrete Fourier Transform computed on the subtracted waveform, seen in Fig. 16. 

The periodicity in the DFT is most likely caused by the subtracted waveform not acting 
completely like a pulse but rather still operating like a continuous function. One way to 
remove some of these extra harmonics is to cut off the data after the data crosses zero. Fig. 
18 shows the subtracted wave form that has been cut off, and Fig. 19 shows the resulting 
DFT.  

 

Fig. 18     Time waveform of the stationary wave subtracted from the moving wave and cut off after the 
source wave becomes periodic. 
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The resulting DFT shown in Fig. 19 looks similar to Fig. 17 but has less harmonics. Fig. 
19 has a peak at 62.56 Hz. 

 

Fig. 19     Discrete Fourier Transform computed on the cut off subtracted waveform, seen in Fig. 18. 

These peaks are extremely close to 60 Hz and is what we would expect from a simulation 
that contains a source cycling at 60 Hz. This tells us that our simulation is fairly accurate. 

Since we were unable to compute the full movement in a reasonable amount of time, we 
decided to also create another simulation that moved the line completely within the three 
time periods simulating previously. Realistically, the line would never move this quickly, 
so this simulation was computed as a proof of concept of our moving source idea. 

Fig. 20 shows the time waveform for the proof of concept simulation, and Fig. 21 shows 
the DFT computed on it.  

In the proof of concept simulation, we did see a weird peak at the end of the waveform that 
we did not expect to see. We believe it was there due to the movement abruptly ending so 
that outlier was cut out from Fig. 20. This allows the waveform could be seen properly on 
the plot. 

In this simulation, we see a peak at 62.06 Hz. The two plots shown in Fig. 20 and Fig. 21 
demonstrate that our movement code does work properly and does not remove the 
frequencies we expected to see in the DFT. 
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Fig. 20     Moving line time waveform for proof of concept idea. 

 

Fig. 21     Discrete Fourier Transform computed on proof of concept idea. 
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5.   CONCLUSION 
 
 
 
 

In this paper we were able to show that a simulation demonstrating power line movement 
with low frequency sources can be simulated using grid dimensions that match earthquake 
data. However, more research and data are needed. First, the MATLAB code should 
continue to be transferred into parallel code to be run on the supercomputers at the 
University of Utah Center for High Performance Computing. The MATLAB code is too 
slow and inefficient for it to continue to be a viable option. Once the code is successfully 
moved into parallel code, researchers can then begin looking at the simulation for the full 
movement of the line. More research can be done to simulate ionosphere layers above the 
power line to have an even better understanding of the interactions in the atmosphere. 

Learning more about the different effect’s earthquakes can have is a good pursuit. It not 
only answers DARPA’s call for research but it will allow us another way to study 
earthquakes that are not reliant upon direct observation. This is part of a first step to using 
passive measurements in the atmosphere to tell us what is happening on the surface no 
matter where it happens on the globe.  
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