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ABSTRACT 

There are several methods for volumetric scene analysis. This research focuses on real-time 
optimization of the ray-driven projector for forward and backward projections in the application 
of medical x-ray imaging. One of the current methods used by Computed Tomography systems 
to produce 3D medical images is the mathematical calculation of the line integral to simulate X-
ray physics combined with Jacobi iterations, termed the Joseph method of discrete projection[1].  
The proposed method is to expand upon the ray-driven model and precompute a sparse matrix of 
voxel to pixel relations. The transfer of a computational barrier to memory is only recently viable 
in real-time due to GPU hardware advances. The parallelization potential means that the 
mathematical operations can be precomputed and, with the utilization of modern GPU memory 
transfer protocols, cycled through for Jacobi iterations that rely on a sparse matrix of operations. 
Thus, the theoretical potential of the proposed method is twofold. First, the mathematical kernel 
operations become matrix operations which is already a deeply studied optimization problem, 
and second, the precomputation of angular information allows for more complex data 
compression. The second half of the research focuses on the extent to which algebraic 
convergence can improve by utilizing a high-resolution input matrix while still operating under 
the constraints of real-time. And with a final exploration of application to higher resolution 
reconstructions. This paper focuses on determining an optimal balance between algebraic 
reconstruction convergence, image quality, and time for a precomputed matrix.   

INTRODUCTION 

In real time application one of the most fundamental aspects of any algorithm is the time needed 
to first produce an initial output, and secondly, the time needed to complete the process. The ray-
driven projector is currently used in medical image reconstruction as it incorporates localized 
memory access and a natural parallel structure, both of which improve the time efficiency of the 
resulting reconstruction. Applying the process to an iterative algorithm to generate a volume over 
sequential forward and back projections mandates even stricter time restraints for use in 
operating procedures. The minimization of delays in the operating room is critical to inform the 
surgeon of complications as soon as possible and maximize success rate. Thus, the necessity for 
optimization is instrumental to the development of iterative reconstruction in a medical setting.  

BACKGROUND 

The distance projector is a more recent rendition of the ray-driven projector [3]. The ray-driven 
projector initializes rays starting at the source position and projects through the volume using the 
projection matrix at that angle. For the forward projection this ray accumulates the voxel values 



to the projection plane and for the back projection retraces the projection path to place voxel 
densities into the volume. This iterative process of forward and back projection results in 
approximate density placement based on the intensity of xRays in the initial projections [3]. The 
ray-driven method suffers from several key problems for image quality. Namely, the number of 
rays is directly correlated to precision of density placement and inversely correlated to the time 
needed to generate. That is, a correct scene reconstruction requires extensive computation and 
thus is not ideal for time limited operations. Secondly, the ray-driven method suffers from a loss 
of information from angled rays. This is a direct result of the reduction of rays for a time 
intensive process. As the rays originate from a source, by necessity the ray density decreases the 
closer to the projection plane, also relative to the distance of the source to the projection plane. In 
order to reduce this impact the operation of splatting was introduced. Splatting interpolates voxel 
values in an area of diminishing contribution around the projected ray [5]. However this adds 
even further computation to an already computational intensive problem. Distance driven 
projectors inherently produce a similar result through area calculations without adding to the 
algorithmic complexity. The splat for the distance driven projection occurs with the projection of 
the points to the projection plane thus expanding the influence of a single voxel across a region 
of the detector. A second solution to ray-driven problems is to project from the plane back to the 
source and thus concentrate rays in local areas. The second method gains the benefit of visibility 
to regional effects on the projection plane but fundamentally is just the inverse of the original 
and still suffers from similar, albeit inverted, problems. Thus, in 2002 Bruno De Man and Samit 
Basu introduced distance driven projections [3]. The distance driven projectors operate under 
similar conditions with the relation between volume and projection planes. Instead of tracing 
rays the distance driven method operates by projecting each z layer of voxels onto the projection 
plane and then calculating overlap and weights accordingly [3]. The mathematical procedure for 
the operation becomes independent of voxel location. However, for the forward projection in 
particular, the distance driven method suffers from the necessity of branching in the kernel due to 
each voxel affecting varying pixels of the projection plane. This branching operation reduces 
warp efficiency and ultimately slows down the entire process. To resolve this a branchless 
method was proposed by utilizing the Summed Area Table (SAT). This method precomputes the 
projections as an SAT in a cumulative summation and then uses the computation to efficiently 
calculate area overlap for region calculation. The distance driven projection to the plane is 
computed and the error result calculated from the SAT projection subtraction. The area value can 
then be calculated by subtraction operations. Through (bottom right) - (top left) - (the top right - 
top left) - (bottom left - top left) which simplifies to BR - TR - BL + TL [2]. Thus the area 
projection calculation can be done without looping over the influence region for weight 
calculation. More recent work has moved away from the optimization of the distance projector in 
favor of alternative approaches such as machine learning [6] and denoising techniques such as 
total variation [7]. Yet, the proposed work is still relevant as most approaches are still centered 
around the fundamentals of the forward and backward iterative method [7,8]. Notably, the 
distance driven SAT method still requires computation of the SAT at every iteration step.  



Independent of the method, 
what the iterative process seeks 
to achieve is a relation between 
the x-ray projections and the 
volume over which the 
projections were generated. By 
forming a relation, the 
projections are iteratively 
compared against the relational 
error in order to converge to a 
solution. Thus, the goal of this 
paper is to propose that any 
method can be precomputed to 
form a relational matrix, or 
projection operator, which can 
then be applied to the 
projections. This matrix is by 
definition sparse as not every voxel interacts with every projection pixel. The relational 
distribution does vary between methods, the ray-driven method is notably sparser than the 
distance driven method due to the locality of rays versus the z level diffusion of the distance 
driven method. The generated projection operator can then be applied through matrix vector 
multiplication methods which have been intensively studied. Furthermore, the constructed matrix 
compression techniques are also critical to the application. The full matrix size of a projection 
operator matrix has a number of rows equal to the number of voxels in the desired output volume 
and a number of columns equal to the input projection size. For a volume of size 384x384x384 
versus a projection size of 244x244 and a float representation the total size is approximately 13 
terabytes. Subsequently, the application of such a matrix is infeasible in terms of storage and 
memory transfer time. Fortunately, the majority of such a matrix is composed of zero values. As 
noted, this is especially the case with the ray projection method as ray traversal through a volume 
leaves the vast majority of the volume irrelevant to the line integral. Thus, matrix compression 
techniques must be applied in order for the application of the projection operator to be tenable. 
Current matrix compression techniques include the Coordinate Format (COO), Compressed 
Sparse Row (CSR) and derived Compressed Sparse Column (CSC) implementations, 
ELLPACK, as well as more advanced compression algorithms. All of these compression 
algorithms only function with the assumption that the number of non-zero components in a 
matrix is significantly less than the total size of the matrix, on the order of 90 to 99 percent zero 
valued weights.  

Coordinate format is the simplest implementation of matrix compression with the direct 
saving of column, row, and value information. For every value in the input matrix the 
corresponding column and row is stored. Thus, the compression reduces a large sparse matrix 
from size m*n to (number of non-zero components)*(weight representation in bytes) + (number 
of non-zero components)*(2*column and row representation size in bytes). The CSR method 
takes the COO compression a step further. The non-zero values are stored in a list with the 
corresponding column index for CSR. The row information is compressed in a series of pointers 
indicating the start of each row. Thus the size is further compressed to (number of non-zero 
components)*(weight representation in bytes) + (number of non-zero components)*(column  
representation size in bytes) + n * (row representation in bytes).  



The ELLPACK (ELL) format is another method to compress sparse matrices [11]. Matrix 
data is aligned to a matrix consisting of all non-zero elements, with non-equal element rows 
padded. The corresponding column indices are aligned to a matrix of identical dimensions.  

There are many more compressed formats than the three 
presented in this paper. While more advanced compression 
techniques may offer additional advantages, compressed sparse 
row and column implementations were selected for both simplicity 
in implementation and alignment of data structures. The ray-
driven method produces rows that have equivalent numbers of 
non-zero elements as each ray step along the ray originating at 
some pixel (u,v) fetches the equivalent number of elements. 
Therefore, there is no significant advantage to using a blocked 
compression method.  

Secondly, for efficient utilization of the projection operator 
the optimization of vector multiplication must be introduced. The 
main strategy employed is the utilization of warp memory 
coalescing. With the utilization of CSR format for A and the 
corresponding CSC format for AT, all operations occur on a 
cascading warp index architecture such that the memory access for 
a warp of 32 threads is coalesced along the given axis. Each thread 
block of 32 is given the task of computing the output value at 
some row index. Matrix vector multiplication can be represented 

with the following computation; each output row o[n] is the result of the summation of the input 
vector at row m multiplied by the corresponding matrix value as row m, column n; e.g. 

 
This poses the unique GPU implementation problem of memory access. The most efficient 
utilization of memory read occurs along the warp such that each thread within a warp reads at an 
offset of continuous memory[9]. That way the instruction multiprocessor can efficiently access 
data for the entire warp. The warp coallescence pairs with the CSR compression since the 
number of elements per row remains constant and there is no multiprocessor delay due to 
branching. Finally, the kernel operation must perform a warp reduction for each of the individual 
summations along the subsections. This can be performed with the CUDA warp level instruction 
sets.  

METHODS 

Regardless of whether the method is ray-driven or distance driven, a projection is a summation 
for every pixel over a series of weights multiplied by corresponding voxels.  

 
   The weights and corresponding voxel locations can be precomputed at known angles resulting 
in a sparse matrix that subsequent acquisitions of x-ray data utilize to quickly compute a 
projection. For this paper, only the ray-driven method was used to precompute a projection 



operator. The ray-driven method was 
selected as it accentuates the benefit of 
sparse matrix multiplication. While 
both are viable constructs, the 
distance-driven method increases the 
density of voxel pixel relations and so 
would require further investigation in 
compression techniques to apply. The 
infrastructure was to first precompute 
the matrix and then parallelize the 
CUDA computation by performing the 
warp level computation reduction as 
explained above. The full projection 
operator matrix was computed, and 
CSR compression was applied. The 
computed matrix was loaded into 
global GPU memory and applied to 
input projections. The projector match 
was verified versus a constant value 
input projection stack and 
subsequently from simulated CT 
scans. The simulation CT scans were 

generated by applying the Joseph method of projection to CT computed volume (Figure 3). 
The second stage of the investigation concerned the application of multi-iteration 

projection operators. The precomputation of the first stage can be expanded to include the voxel-
pixel relations of the nth iteration by the computed formula and applied in the same manner as a 
single iteration, xn=Mg. 

 

 
 
To generate the precomputed weights, the multi-iteration matrix generation was generalized into 
a series of column vector multiplications. That is, to achieve a matrix generation, the column 
multiplication is applied recursively. The base case is AT, and each subsequent formula index is 
either a CSR application or a CSC application versus the recursively generated column. A 
column at iteration i is computed from the stored projection operator matrix multiplied by the 
previous column for some formula F consisting of a series of ATAATA  operations. 

 
Thus, all matrix operations can be reduced to a series of matrix-vector operations and optimized. 
Furthermore, the space complexity requires only the matrix A and a column vector in memory at 
any given time. The main benefit of precomputing multiple iterations is from subsequent 
compression methods that can be applied not only along with data correlations from the ray 
projection derivation but also along the iteration dimension to maximize the efficiency of data 
utilization. Thus for some given application of xn=Mg, the relative data complexity can be 
dramatically reduced from the previous single iteration projection operator A. The compression 



technique applied was a thresholding of the matrix M. The weights below the threshold value are 
binned by angle index and applied as a secondary step in the iteration process. The matrix 
multiplication then becomes the multiplication of the critical components versus the projection 
data plus the binned information versus the binned projection data. 

 
The majority of information in subsequent iterations is composed of small negative weights 

versus angular peaks (Figure 4). The angular peaks are mainly composed of the initial AT 

information and refined by subsequent iteration reductions from other ray-driven data. Thus, by 
thresholding the matrix, the density information is preserved, and the application of a 
compressed binned weight versus projection data reintroduces the remaining subtraction 
components. This is critical for empty space density placement as the projection data will 
subtract the additional information versus the initial estimate of density from the precomputed 
geometric projection operator. 

 
The third expansion addressed in this paper is the application of the acceleration to 

meaningful volumes through a multi-resolution approach. While GPU resources limited the 
matrix computation capability to relatively small volumes in stage 2, stage 3 performed an 
upscale and seed application to volumes with the following application of the in-line approach. 
The upscaling was performed in a trilinear manner and introduced to the Jacobi iterations. 

RESULTS 

The testing was done utilizing Nvidia's visual profiler for speed optimizations, with the base case 
being the original distance-driven projector method and the second case being the attempted 
optimization using precomputation. The system configuration was an Intel i9-10900X, 64 GB 
DDR4 RAM, Ubuntu 18.04.5 LTS with kernel version 4.15.0-112-generic, CUDA 11.4 with 
Nvidia driver 470.57.02, and compiled with distributed nvcc version 11.4. The weights, read, and 
write indices were stored in an initial kernel precomputation stage, with the forward projector 
kernel computation analyzed afterward. The forward projector was run 10,000 times for both the 
attempted optimization and the original, producing the same results for a volume consisting of 
ones for a single angle as shown by Figure 5 and secondly to the simulated CT projections.  The 
resulting projection was matched for both methods. However, the timing showed that the 



attempted optimizations slowed the kernel 
down from approximately 138 to 245 
nanoseconds. Thus, the access time for reading 
in pre-calculated values and performing the 
atomic addition onto the projection plane 
ultimately occupied more time than performing 
the mathematical operations. Memory 
consumption versus volume computation size 
was an additional problem. 

 
Figure 6 displays the 
computation time of a single 
iteration for the direct matrix 
operator method versus the 
in-line ray projector. The 
application of the full matrix 
performs worse than the in-
line method for all 
experimental resolutions. 
Furthermore, as seen in 
figure 6, there are significant 
time computation increases 

in two regions for the direct matrix method. The first region is due to the exceeding of GPU 
cache streamline capabilities and the subsequent use of global GPU memory. The second 
dramatic increase is with the introduction of unified CUDA memory, as the global memory limit 
was exceeded for the utilized GPU architecture. The total size of the uncompressed projection 
operation matrix became untenable for rapid memory utilization. Thus, a directed approach of 
compression was required with a further compression and time optimization of utilizing multiple 
iterations in a single step. With the introduction of matrix binning, the overall time to 
convergence was reduced versus the in-line method (Figure 7) while maintaining image quality. 
The relative convergence criteria also remained consistent with both solutions converging to 
approximately the same point (Figure 8). 



 
 

 
For the third stage of the 

project, the volumes provided 
by the in-line method were 
applied to a higher resolution 
Jacobi iteration as a seed. The 
volumes were first upsampled 
through the use of CUDA 
texture resources and then 
applied as an input for the 
traditional Jacobi iteration 
algorithm. This resulted in a 
relative improvement in the starting point for the seeded method. Both converged approximately 
to the same point in the error projections. However, the seeded input reached both a lower 
threshold and similar final convergence in less time (Figure 9). 

 

CONCLUSIONS 

The direct application of the full projection operator matrix was proven through memory model 
predictions and application to be slower than the traditional Jacobi iteration method. The direct 
in-line method of a single projection operator, even with CSR compression and optimized 
matrix-vector multiplications, did not achieve faster results than the traditional method. This 
required the investigation of further mathematical compression techniques to overcome the 
method access issues. The binning of small weights resulted in a significant reduction in overall 
matrix size with minimal impact on image quality and convergence. The reduction in matrix size 
offered a reduction in computation time, especially when applied to a multi-iteration model. 
Finally, the seed method shows promise for the direct application of the in-line method to 
production systems. Further investigation is still possible in the utilization of the in-line method 
to larger volumes with more sophisticated compression techniques. Further work would need to 



improve upon the matrix generation efficiency or have access to more GPU infrastructure as the 
predicted time to compute a single projection operator at 384x384x384 volumes, and a four-step 
multi-iteration would take approximately three weeks with the GPU resources utilized in this 
paper. 
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