
University of Utah

UNDERGRADUATE RESEARCH JOURNAL

ALGEBRAIC RECONSTRUCTION OPTIMIZATION THROUGH

PRECOMPUTATION OF WEIGHTS MATRIX
Jared Green (Cem Yuksel)

Department of Engineering

ABSTRACT

There are several methods for volumetric scene analysis. This research focuses on real-time
optimization of the ray-driven projector for forward and backward projections in the application
of medical x-ray imaging. One of the current methods used by Computed Tomography systems
to produce 3D medical images is the mathematical calculation of the line integral to simulate X-
ray physics combined with Jacobi iterations, termed the Joseph method of discrete projection[1].
The proposed method is to expand upon the ray-driven model and precompute a sparse matrix of
voxel to pixel relations. The transfer of a computational barrier to memory is only recently viable
in real-time due to GPU hardware advances. The parallelization potential means that the
mathematical operations can be precomputed and, with the utilization of modern GPU memory
transfer protocols, cycled through for Jacobi iterations that rely on a sparse matrix of operations.
Thus, the theoretical potential of the proposed method is twofold. First, the mathematical kernel
operations become matrix operations which is already a deeply studied optimization problem,
and second, the precomputation of angular information allows for more complex data
compression. The second half of the research focuses on the extent to which algebraic
convergence can improve by utilizing a high-resolution input matrix while still operating under
the constraints of real-time. And with a final exploration of application to higher resolution
reconstructions. This paper focuses on determining an optimal balance between algebraic
reconstruction convergence, image quality, and time for a precomputed matrix.

INTRODUCTION

In real time application one of the most fundamental aspects of any algorithm is the time needed
to first produce an initial output, and secondly, the time needed to complete the process. The ray-
driven projector is currently used in medical image reconstruction as it incorporates localized
memory access and a natural parallel structure, both of which improve the time efficiency of the
resulting reconstruction. Applying the process to an iterative algorithm to generate a volume over
sequential forward and back projections mandates even stricter time restraints for use in
operating procedures. The minimization of delays in the operating room is critical to inform the
surgeon of complications as soon as possible and maximize success rate. Thus, the necessity for
optimization is instrumental to the development of iterative reconstruction in a medical setting.

BACKGROUND

The distance projector is a more recent rendition of the ray-driven projector [3]. The ray-driven
projector initializes rays starting at the source position and projects through the volume using the
projection matrix at that angle. For the forward projection this ray accumulates the voxel values

to the projection plane and for the back projection retraces the projection path to place voxel
densities into the volume. This iterative process of forward and back projection results in
approximate density placement based on the intensity of xRays in the initial projections [3]. The
ray-driven method suffers from several key problems for image quality. Namely, the number of
rays is directly correlated to precision of density placement and inversely correlated to the time
needed to generate. That is, a correct scene reconstruction requires extensive computation and
thus is not ideal for time limited operations. Secondly, the ray-driven method suffers from a loss
of information from angled rays. This is a direct result of the reduction of rays for a time
intensive process. As the rays originate from a source, by necessity the ray density decreases the
closer to the projection plane, also relative to the distance of the source to the projection plane. In
order to reduce this impact the operation of splatting was introduced. Splatting interpolates voxel
values in an area of diminishing contribution around the projected ray [5]. However this adds
even further computation to an already computational intensive problem. Distance driven
projectors inherently produce a similar result through area calculations without adding to the
algorithmic complexity. The splat for the distance driven projection occurs with the projection of
the points to the projection plane thus expanding the influence of a single voxel across a region
of the detector. A second solution to ray-driven problems is to project from the plane back to the
source and thus concentrate rays in local areas. The second method gains the benefit of visibility
to regional effects on the projection plane but fundamentally is just the inverse of the original
and still suffers from similar, albeit inverted, problems. Thus, in 2002 Bruno De Man and Samit
Basu introduced distance driven projections [3]. The distance driven projectors operate under
similar conditions with the relation between volume and projection planes. Instead of tracing
rays the distance driven method operates by projecting each z layer of voxels onto the projection
plane and then calculating overlap and weights accordingly [3]. The mathematical procedure for
the operation becomes independent of voxel location. However, for the forward projection in
particular, the distance driven method suffers from the necessity of branching in the kernel due to
each voxel affecting varying pixels of the projection plane. This branching operation reduces
warp efficiency and ultimately slows down the entire process. To resolve this a branchless
method was proposed by utilizing the Summed Area Table (SAT). This method precomputes the
projections as an SAT in a cumulative summation and then uses the computation to efficiently
calculate area overlap for region calculation. The distance driven projection to the plane is
computed and the error result calculated from the SAT projection subtraction. The area value can
then be calculated by subtraction operations. Through (bottom right) - (top left) - (the top right -
top left) - (bottom left - top left) which simplifies to BR - TR - BL + TL [2]. Thus the area
projection calculation can be done without looping over the influence region for weight
calculation. More recent work has moved away from the optimization of the distance projector in
favor of alternative approaches such as machine learning [6] and denoising techniques such as
total variation [7]. Yet, the proposed work is still relevant as most approaches are still centered
around the fundamentals of the forward and backward iterative method [7,8]. Notably, the
distance driven SAT method still requires computation of the SAT at every iteration step.

Independent of the method,
what the iterative process seeks
to achieve is a relation between
the x-ray projections and the
volume over which the
projections were generated. By
forming a relation, the
projections are iteratively
compared against the relational
error in order to converge to a
solution. Thus, the goal of this
paper is to propose that any
method can be precomputed to
form a relational matrix, or
projection operator, which can
then be applied to the
projections. This matrix is by
definition sparse as not every voxel interacts with every projection pixel. The relational
distribution does vary between methods, the ray-driven method is notably sparser than the
distance driven method due to the locality of rays versus the z level diffusion of the distance
driven method. The generated projection operator can then be applied through matrix vector
multiplication methods which have been intensively studied. Furthermore, the constructed matrix
compression techniques are also critical to the application. The full matrix size of a projection
operator matrix has a number of rows equal to the number of voxels in the desired output volume
and a number of columns equal to the input projection size. For a volume of size 384x384x384
versus a projection size of 244x244 and a float representation the total size is approximately 13
terabytes. Subsequently, the application of such a matrix is infeasible in terms of storage and
memory transfer time. Fortunately, the majority of such a matrix is composed of zero values. As
noted, this is especially the case with the ray projection method as ray traversal through a volume
leaves the vast majority of the volume irrelevant to the line integral. Thus, matrix compression
techniques must be applied in order for the application of the projection operator to be tenable.
Current matrix compression techniques include the Coordinate Format (COO), Compressed
Sparse Row (CSR) and derived Compressed Sparse Column (CSC) implementations,
ELLPACK, as well as more advanced compression algorithms. All of these compression
algorithms only function with the assumption that the number of non-zero components in a
matrix is significantly less than the total size of the matrix, on the order of 90 to 99 percent zero
valued weights.

Coordinate format is the simplest implementation of matrix compression with the direct
saving of column, row, and value information. For every value in the input matrix the
corresponding column and row is stored. Thus, the compression reduces a large sparse matrix
from size m*n to (number of non-zero components)*(weight representation in bytes) + (number
of non-zero components)*(2*column and row representation size in bytes). The CSR method
takes the COO compression a step further. The non-zero values are stored in a list with the
corresponding column index for CSR. The row information is compressed in a series of pointers
indicating the start of each row. Thus the size is further compressed to (number of non-zero
components)*(weight representation in bytes) + (number of non-zero components)*(column
representation size in bytes) + n * (row representation in bytes).

The ELLPACK (ELL) format is another method to compress sparse matrices [11]. Matrix
data is aligned to a matrix consisting of all non-zero elements, with non-equal element rows
padded. The corresponding column indices are aligned to a matrix of identical dimensions.

There are many more compressed formats than the three
presented in this paper. While more advanced compression
techniques may offer additional advantages, compressed sparse
row and column implementations were selected for both simplicity
in implementation and alignment of data structures. The ray-
driven method produces rows that have equivalent numbers of
non-zero elements as each ray step along the ray originating at
some pixel (u,v) fetches the equivalent number of elements.
Therefore, there is no significant advantage to using a blocked
compression method.

Secondly, for efficient utilization of the projection operator
the optimization of vector multiplication must be introduced. The
main strategy employed is the utilization of warp memory
coalescing. With the utilization of CSR format for A and the
corresponding CSC format for AT, all operations occur on a
cascading warp index architecture such that the memory access for
a warp of 32 threads is coalesced along the given axis. Each thread
block of 32 is given the task of computing the output value at
some row index. Matrix vector multiplication can be represented

with the following computation; each output row o[n] is the result of the summation of the input
vector at row m multiplied by the corresponding matrix value as row m, column n; e.g.

This poses the unique GPU implementation problem of memory access. The most efficient
utilization of memory read occurs along the warp such that each thread within a warp reads at an
offset of continuous memory[9]. That way the instruction multiprocessor can efficiently access
data for the entire warp. The warp coallescence pairs with the CSR compression since the
number of elements per row remains constant and there is no multiprocessor delay due to
branching. Finally, the kernel operation must perform a warp reduction for each of the individual
summations along the subsections. This can be performed with the CUDA warp level instruction
sets.

METHODS

Regardless of whether the method is ray-driven or distance driven, a projection is a summation
for every pixel over a series of weights multiplied by corresponding voxels.

 The weights and corresponding voxel locations can be precomputed at known angles resulting
in a sparse matrix that subsequent acquisitions of x-ray data utilize to quickly compute a
projection. For this paper, only the ray-driven method was used to precompute a projection

operator. The ray-driven method was
selected as it accentuates the benefit of
sparse matrix multiplication. While
both are viable constructs, the
distance-driven method increases the
density of voxel pixel relations and so
would require further investigation in
compression techniques to apply. The
infrastructure was to first precompute
the matrix and then parallelize the
CUDA computation by performing the
warp level computation reduction as
explained above. The full projection
operator matrix was computed, and
CSR compression was applied. The
computed matrix was loaded into
global GPU memory and applied to
input projections. The projector match
was verified versus a constant value
input projection stack and
subsequently from simulated CT
scans. The simulation CT scans were

generated by applying the Joseph method of projection to CT computed volume (Figure 3).
The second stage of the investigation concerned the application of multi-iteration

projection operators. The precomputation of the first stage can be expanded to include the voxel-
pixel relations of the nth iteration by the computed formula and applied in the same manner as a
single iteration, xn=Mg.

To generate the precomputed weights, the multi-iteration matrix generation was generalized into
a series of column vector multiplications. That is, to achieve a matrix generation, the column
multiplication is applied recursively. The base case is AT, and each subsequent formula index is
either a CSR application or a CSC application versus the recursively generated column. A
column at iteration i is computed from the stored projection operator matrix multiplied by the
previous column for some formula F consisting of a series of ATAATA operations.

Thus, all matrix operations can be reduced to a series of matrix-vector operations and optimized.
Furthermore, the space complexity requires only the matrix A and a column vector in memory at
any given time. The main benefit of precomputing multiple iterations is from subsequent
compression methods that can be applied not only along with data correlations from the ray
projection derivation but also along the iteration dimension to maximize the efficiency of data
utilization. Thus for some given application of xn=Mg, the relative data complexity can be
dramatically reduced from the previous single iteration projection operator A. The compression

technique applied was a thresholding of the matrix M. The weights below the threshold value are
binned by angle index and applied as a secondary step in the iteration process. The matrix
multiplication then becomes the multiplication of the critical components versus the projection
data plus the binned information versus the binned projection data.

The majority of information in subsequent iterations is composed of small negative weights

versus angular peaks (Figure 4). The angular peaks are mainly composed of the initial AT

information and refined by subsequent iteration reductions from other ray-driven data. Thus, by
thresholding the matrix, the density information is preserved, and the application of a
compressed binned weight versus projection data reintroduces the remaining subtraction
components. This is critical for empty space density placement as the projection data will
subtract the additional information versus the initial estimate of density from the precomputed
geometric projection operator.

The third expansion addressed in this paper is the application of the acceleration to

meaningful volumes through a multi-resolution approach. While GPU resources limited the
matrix computation capability to relatively small volumes in stage 2, stage 3 performed an
upscale and seed application to volumes with the following application of the in-line approach.
The upscaling was performed in a trilinear manner and introduced to the Jacobi iterations.

RESULTS

The testing was done utilizing Nvidia's visual profiler for speed optimizations, with the base case
being the original distance-driven projector method and the second case being the attempted
optimization using precomputation. The system configuration was an Intel i9-10900X, 64 GB
DDR4 RAM, Ubuntu 18.04.5 LTS with kernel version 4.15.0-112-generic, CUDA 11.4 with
Nvidia driver 470.57.02, and compiled with distributed nvcc version 11.4. The weights, read, and
write indices were stored in an initial kernel precomputation stage, with the forward projector
kernel computation analyzed afterward. The forward projector was run 10,000 times for both the
attempted optimization and the original, producing the same results for a volume consisting of
ones for a single angle as shown by Figure 5 and secondly to the simulated CT projections. The
resulting projection was matched for both methods. However, the timing showed that the

attempted optimizations slowed the kernel
down from approximately 138 to 245
nanoseconds. Thus, the access time for reading
in pre-calculated values and performing the
atomic addition onto the projection plane
ultimately occupied more time than performing
the mathematical operations. Memory
consumption versus volume computation size
was an additional problem.

Figure 6 displays the
computation time of a single
iteration for the direct matrix
operator method versus the
in-line ray projector. The
application of the full matrix
performs worse than the in-
line method for all
experimental resolutions.
Furthermore, as seen in
figure 6, there are significant
time computation increases

in two regions for the direct matrix method. The first region is due to the exceeding of GPU
cache streamline capabilities and the subsequent use of global GPU memory. The second
dramatic increase is with the introduction of unified CUDA memory, as the global memory limit
was exceeded for the utilized GPU architecture. The total size of the uncompressed projection
operation matrix became untenable for rapid memory utilization. Thus, a directed approach of
compression was required with a further compression and time optimization of utilizing multiple
iterations in a single step. With the introduction of matrix binning, the overall time to
convergence was reduced versus the in-line method (Figure 7) while maintaining image quality.
The relative convergence criteria also remained consistent with both solutions converging to
approximately the same point (Figure 8).

For the third stage of the

project, the volumes provided
by the in-line method were
applied to a higher resolution
Jacobi iteration as a seed. The
volumes were first upsampled
through the use of CUDA
texture resources and then
applied as an input for the
traditional Jacobi iteration
algorithm. This resulted in a
relative improvement in the starting point for the seeded method. Both converged approximately
to the same point in the error projections. However, the seeded input reached both a lower
threshold and similar final convergence in less time (Figure 9).

CONCLUSIONS

The direct application of the full projection operator matrix was proven through memory model
predictions and application to be slower than the traditional Jacobi iteration method. The direct
in-line method of a single projection operator, even with CSR compression and optimized
matrix-vector multiplications, did not achieve faster results than the traditional method. This
required the investigation of further mathematical compression techniques to overcome the
method access issues. The binning of small weights resulted in a significant reduction in overall
matrix size with minimal impact on image quality and convergence. The reduction in matrix size
offered a reduction in computation time, especially when applied to a multi-iteration model.
Finally, the seed method shows promise for the direct application of the in-line method to
production systems. Further investigation is still possible in the utilization of the in-line method
to larger volumes with more sophisticated compression techniques. Further work would need to

improve upon the matrix generation efficiency or have access to more GPU infrastructure as the
predicted time to compute a single projection operator at 384x384x384 volumes, and a four-step
multi-iteration would take approximately three weeks with the GPU resources utilized in this
paper.

REFERENCES

[1] P. M. Joseph. An Improved Algorithm for Reprojecting Rays through Pixel Images. IEEE
Transactions on Medical Imaging. 1982 Nov; 1(3), pp. 192-196. doi:
10.1109/TMI.1982.4307572.
[2] Liu, Rui & Fu, Lin & De Man, Bruno. (2017). GPU-Based Branchless Distance-Driven
Projection and Backprojection. IEEE Transactions on Computational Imaging. PP. 1-1.
10.1109/TCI.2017.2675705.
[3] B. De Man and S. Basu, "Distance-driven projection and backprojection," 2002 IEEE
Nuclear Science Symposium Conference Record, Norfolk, VA, USA, 2002, pp. 1477-1480 vol.3,
doi: 10.1109/NSSMIC.2002.1239600.
[4] Du, Y., Yu, G., Xiang, X. et al. GPU accelerated voxel-driven forward projection for iterative
reconstruction of cone-beam CT. BioMed Eng OnLine 16, 2 (2017).
https://doi.org/10.1186/s12938-016-0293-8
[5] M. Zwicker, H. Pfister, J. van Baar and M. Gross, "EWA splatting," in IEEE Transactions on
Visualization and Computer Graphics, vol. 8, no. 3, pp. 223-238, July-Sept. 2002, doi:
10.1109/TVCG.2002.1021576.
http://hhoppe.com/recursive.pdf
[6] Chen, Gaoyu, et al. "AirNet: Fused analytical and iterative reconstruction with deep neural
network regularization for sparse‐data CT." Medical physics 47.7 (2020): 2916-2930.
[7] Zhang, Zheng, et al. "Directional-tv algorithm for image reconstruction from limited-angular-
range data." Medical Image Analysis (2021): 102030.
[8] Geyer, Lucas L., et al. "State of the art: iterative CT reconstruction techniques." Radiology
276.2 (2015): 339-357.
[9] Bakhoda, Ali, et al. "Analyzing CUDA workloads using a detailed GPU simulator." 2009
IEEE International Symposium on Performance Analysis of Systems and Software. IEEE, 2009.
[10] Harun, H. H., et al. "The influence of iterative reconstruction level on image quality and
radiation dose in CT pulmonary angiography examinations." Radiation Physics and Chemistry
178 (2021): 108989.
[11] Grimes, Roger G., David R. Kincaid, and David M. Young. ITPACK 2.0 user's guide.
Center for Numerical Analysis, Univ., 1979.
[12] K. Choo, W. Panlener and B. Jang, "Understanding and Optimizing GPU Cache Memory
Performance for Compute Workloads," 2014 IEEE 13th International Symposium on Parallel
and Distributed Computing, Marseille, France, 2014, pp. 189-196, doi: 10.1109/ISPDC.2014.29.
[13] Al-Kharusi, Ibrahim, and David W. Walker. "Locality properties of 3D data orderings with
application to parallel molecular dynamics simulations." The International Journal of High
Performance Computing Applications 33.5 (2019): 998-1018.
[14] Bell, Nathan, and Michael Garland. Efficient sparse matrix-vector multiplication on CUDA.
Vol. 2. No. 5. Nvidia Technical Report NVR-2008-004, Nvidia Corporation, 2008.

