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Problem and Thesis

• The feasible region (F) is being studied to determine if it offers an efficient SAT solution 
or good heuristics for solving SAT 

• The thesis of this work is that certain properties of F allow better insight into the 
existence of a SAT solution 

• Due to the continuous nature of Hn, it may also be possible to estimate atom 
probabilities over all solutions 

• The thesis examines linprog solutions, p-centers, analytic centers, and neural net models 
to evaluate the feasible region



• The Satisfiability Problem (SAT)  is to determine if there is a truth assignment to the 
logical variables that makes a logical sentence true 

• If such a truth assignment exists, the sentence is called satisfiable 

• Otherwise, the sentence is unsatisfiable 

• The best known algorithm to solve SAT is NP-complete (meaning it requires polynomial 
time on a nondeterministic Turing machine)

The Satisfiability Problem



• Given n logical variables (or atoms) a model (or complete conjunction) is an assignment of 0 (false) 
or 1 (true) to each atom.  

• There are 2n models.  
• These models can be represented as n-tuples in n-dimensional space, and correspond to the 

corners of Hn, the n-D hypercube.  

• The meaning of this is that the ith axis corresponds to the values which can be assigned to the ith 
variable.

• Given any point in Hn, that point can be considered as a set of probabilities for the atoms.  

• This allows consideration of a probabilistic version of SAT called Probabilistic SAT (PSAT)

Probabilistic Satisfiability



PSAT is defined as follows; given a logical sentence in Conjunctive Normal Form (CNF),
and a probability, pi, associated with each conjunct, Ci, find a function, π : Ω → [0, 1],

where Ω is the set of all complete conjunctions, and all of the following are true:

Probabilistic Satisfiability

 

 



Henderson et al. proposed a geometric approach, called Chop-SAT for solving SAT

The Satisfiability Problem



• In the geometric approach to SAT, the n-dimensional hypercube, Hn, represents the 
solution space   for a SAT problem.  

• Parts of Hn are removed based on a geometric interpretation of the logical    sentence.  

• This results in a convex feasible region, F, and a solution to the SAT problem is sought  in F.

Geometric Approach to SAT



• A knowledge base (KB) is defined as a CNF sentence, and each conjunct is given a 
probability

• The Chop-SAT method is used to produce a set of hyperplanes such that the 
intersection of their non-negative half-spaces determines the feasible region 

• The feasible region represents the solution space for the KB 

• Every consistent sentence results in a feasible region which contains an H corner; thus, 
some point in the feasible region is √n/2 distant from the center of H, and it can be 
determined that the sentence is consistent

Chop-SAT: Feasible Region Properties



The clauses [-1 -2 -3], [-1 -2 3], [-1 2 -3], [-1 2 3], [ 1 -2 -3], and [ 1 -2 3], where each conjunct 
is represented by the index of the atom and a negative value if the atom is negated, form 
the feasible region below.

Chop-SAT: Satisfiable KB Example

The feasible region for a 
satisfiable sentence in 3D.



The clauses [-1 -2 -3], [-1 -2 3], [-1 2 -3], [-1 2 3], [ 1 -2 -3], and [ 1 -2 3], [1 -2 3], [1 2 3], 
where each conjunct is represented by the index of the atom and a negative value if the 
atom is negated, form the feasible region below.

Chop-SAT: Unsatisfiable KB Example

The Feasible Region for  the Unsatisfiable 
Sentence in 3D with maximal volume.



• Examine usefulness of linprog solutions in determining the satisfiability of a knowledge 
base 

How linprog works:

Linprog Solutions Method

 



• The linprog solutions are determined for both general and independent knowledge bases 
with from 10 to 20 atoms 

• In independent knowledge bases, atoms are guaranteed to be independent. That is, P(a1) * 
P(a2) = P(a1^a2) 

• Declare knowledge base satisfiable when a linprog solution is found for which the distance 
from the center of a hypercube to the solution point found is greater than sqrt(n-2) / 2.  

• In the maximal volume feasible region in an unsatisfiable KB, no point is farther than 
sqrt(n-2)/2 from the center of Hn

Linprog Solutions Method



Linprog Solutions Method

Plot of the average number of projections needed to determine a KB 
satisfiable on set axes on general KBs, from 10 to 20 atoms



Linprog Solutions Method

Plot of the average number of projections needed to determine a KB 
satisfiable on random axes on general KBs, from 10 to 20 atoms



Linprog Solutions Method

Plot of the average number of projections needed to determine a KB 
satisfiable on set axes on independent KBs, from 10 to 20 atoms



Linprog Solutions Method

Plot of the average number of projections needed to determine a KB 
satisfiable on random axes on independent KBs, from 10 to 20 atoms



Linprog Solutions Method



Linprog Solutions Method



Linprog Solutions Method

• Method appeared promising on small KBs, but became time-consuming and performed 
poorly on medium-sized KBs 

• Further testing on large KBs was not needed



• In a KB with the clauses: ((a1 ∨  a2 ∨ a3 ∨ a4) ∧(¬a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬a3) ∧ (¬a1 ∨ ¬a4) 
∧(¬a2 ∨ ¬a3) ∧ (¬a2 ∨ ¬a4) ∧ (¬a3 ∨ ¬a4)), the solutions are: [0, 0, 0, 1], [0, 0, 1, 0], [0, 
1, 0,  0], [1, 0, 0, 0].  

• Each atom is true in 1/4 of the solutions, giving each atom a probability of  0.25.  

• The probabilities of the atoms may be useful in a decision making process

Centers



 
Centers



Centers

Plot of the Euclidean distance between the atom probabilities and the mean of the 
linprog solutions on satisfiable, 20 atom KBs.



Centers

Plot of the Euclidean distance between the atom probabilities and the p-
centers on satisfiable, 20 atom KBs.



Centers

Plot of the Euclidean distance between the atom probabilities and the 
analytic centers on satisfiable, 20 atom KBs.



Centers

Plot of the Euclidean distance between the atom probabilities and the mean of the 
linprog solutions on satisfiable, 50 atom KBs.



Centers

Plot of the Euclidean distance between the atom probabilities and the p-centers 
on satisfiable, 50 atom KBs.



Centers

Plot of the Euclidean distance between the atom probabilities and the analytic 
centers on satisfiable, 50 atom KBs.



• Structure of neural net could be indicative of the satisfiability of the KB 

• Train neural net models based on feasible points, unsatisfiable KB net and satisfiable KB net 

• Create image of these neural net models 

• Train neural net model with net images to classify KBs  

• Trained 500 unsatisfiable KB neural nets and 500 satisfiable KB neural nets with 10000 
points each 

• Trained final neural net with images of above neural nets 

Neural Net Models



Neural Net Models

• Classified 0.5050 of 200 Knowledge bases correctly 

• Choosing satisfiable or unsatisfiable at random is almost equivalently as effective 

• Structure of neural net is not indicative of the satisfiability



Conclusions

● Linprog solutions are not an accurate method for determining the satisfiability of a KB with 
more than a small number of atoms

● The analytic center is the best approximation to the atom probabilities

● The structure of a feasible point based neural net model does not indicate the satisfiability of 
the KB

● Further study would include using the analytic center in agent decision making situations to 
compare its effectiveness with other methods
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